1
|
Scarampi A, Lawrence JM, Bombelli P, Kosmützky D, Zhang JZ, Howe CJ. Polyploid cyanobacterial genomes provide a reservoir of mutations, allowing rapid evolution of herbicide resistance. Curr Biol 2025; 35:1549-1561.e3. [PMID: 40120581 DOI: 10.1016/j.cub.2025.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/13/2024] [Accepted: 02/19/2025] [Indexed: 03/25/2025]
Abstract
Adaptive mechanisms in bacteria, which are widely assumed to be haploid or partially diploid, are thought to rely on the emergence of spontaneous mutations or lateral gene transfer from a reservoir of pre-existing variants within the surrounding environment. These variants then become fixed in the population upon exposure to selective pressures. Here, we show that multiple distinct wild-type (WT) substrains of the highly polyploid cyanobacterium Synechocystis sp. PCC 6803 can adapt rapidly to the potent herbicide methyl viologen (MV). Genome sequencing revealed that the mutations responsible for adaptation to MV were already present prior to selection in the genomes of the unadapted parental strains at low allelic frequencies. This indicates that chromosomal polyploidy in bacteria can provide cells with a reservoir of conditionally beneficial mutations that can become rapidly enriched and fixed upon selection. MV-resistant strains performed oxygenic photosynthesis less efficiently than WTs when MV was absent, suggesting trade-offs in cellular fitness associated with the evolution of MV resistance and a possible role for balancing selection in the maintenance of these alleles under ecologically relevant growth conditions. Resistance was associated with reduced intracellular accumulation of MV. Our results indicate that genome polyploidy plays a role in the rapid adaptation of some bacteria to stressful conditions, which may include xenobiotics, nutrient limitation, environmental stresses, and seasonal changes.
Collapse
Affiliation(s)
- Alberto Scarampi
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.
| | - Joshua M Lawrence
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK; Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
| | - Paolo Bombelli
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Darius Kosmützky
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Jenny Z Zhang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Christopher J Howe
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.
| |
Collapse
|
2
|
Tamanna SS, Boden JS, Kaiser KM, Wannicke N, Höring J, Sánchez‐Baracaldo P, Deponte M, Frankenberg‐Dinkel N, Gehringer MM. Early-Branching Cyanobacteria Grow Faster and Upregulate Superoxide Dismutase Activity Under a Simulated Early Earth Anoxic Atmosphere. GEOBIOLOGY 2024; 22:e70005. [PMID: 39665522 PMCID: PMC11636452 DOI: 10.1111/gbi.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 12/13/2024]
Abstract
The evolution of oxygenic photosynthesis during the Archean (4-2.5 Ga) required the presence of complementary reducing pathways to maintain the cellular redox balance. While the timing of the evolution of superoxide dismutases (SODs), enzymes that convert superoxide to hydrogen peroxide and O2, within bacteria and archaea is not resolved, the first SODs appearing in cyanobacteria contained copper and zinc in the reaction center (CuZnSOD). Here, we analyse growth characteristics, SOD gene expression (qRT-PCR) and cellular enzyme activity in the deep branching strain, Pseudanabaena sp. PCC7367, previously demonstrated to release significantly more O2 under anoxic conditions. The observed significantly higher growth rates (p < 0.001) and protein and glycogen contents (p < 0.05) in anoxically cultured Pseudanabaena PCC7367 compared to control cultures grown under present-day oxygen-rich conditions prompted the following question: Is the growth of Pseudanabaena sp. PCC7367 correlated to atmospheric pO2 and cellular SOD activity? Expression of sodB (encoding FeSOD) and sodC (encoding CuZnSOD) strongly correlated with medium O2 levels (p < 0.001). Expression of sodA (encoding MnSOD) correlated significantly to SOD activity during the day (p = 0.019) when medium O2 concentrations were the highest. The cellular SOD enzyme activity of anoxically grown cultures was significantly higher (p < 0.001) 2 h before the onset of the dark phase compared to O2-rich growth conditions. The expression of SOD encoding genes was significantly reduced (p < 0.05) under anoxic conditions in stirred cultures, as were medium O2 levels (p ≤ 0.001), compared to oxic-grown cultures, whereas total cellular SOD activity remained comparable. Our data suggest that increasing pO2 negatively impacts the viability of early cyanobacteria, possibly by increasing photorespiration. Additionally, the increased expression of superoxide-inactivating genes during the dark phase suggests the increased replacement rates of SODs under modern-day conditions compared to those on early Earth.
Collapse
Affiliation(s)
- Sadia S. Tamanna
- Department of MicrobiologyUniversity of Kaiserslautern‐Landau RPTUKaiserslauternGermany
- Department of Molecular BotanyUniversity of Kaiserslautern‐Landau RPTUKaiserslauternGermany
| | - Joanne S. Boden
- School of Geographical Sciences, Faculty of ScienceUniversity of BristolBristolUK
- School of Earth and Environmental SciencesUniversity of St. AndrewsSt. AndrewsUK
| | - Kimberly M. Kaiser
- Department of MicrobiologyUniversity of Kaiserslautern‐Landau RPTUKaiserslauternGermany
| | - Nicola Wannicke
- Plasma BioengineeringLeibniz Institute of Plasma Science and TechnologyGreifswaldGermany
| | - Jonas Höring
- Department of MicrobiologyUniversity of Kaiserslautern‐Landau RPTUKaiserslauternGermany
| | | | - Marcel Deponte
- Department of ChemistryUniversity of Kaiserslautern‐Landau RPTUKaiserslauternGermany
| | | | - Michelle M. Gehringer
- Department of MicrobiologyUniversity of Kaiserslautern‐Landau RPTUKaiserslauternGermany
| |
Collapse
|
3
|
Application of Spectroscopic Methods for the Identification of Superoxide Dismutases in Cyanobacteria. Int J Mol Sci 2022; 23:ijms232213819. [PMID: 36430299 PMCID: PMC9692673 DOI: 10.3390/ijms232213819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Superoxide dismutases (SODs) belong to the group of metalloenzymes that remove superoxide anion radicals and they have been identified in three domains of life: Bacteria, Archaea and Eucarya. SODs in Synechocystis sp. PCC 6803, Gloeobacter violaceus CCALA 979, and Geitlerinema sp. ZHR1A were investigated. We hypothesized that iron (FeSOD) and/or manganese (MnSOD) dominate as active forms in these cyanobacteria. Activity staining and three different spectroscopic methods of SOD activity bands excised from the gels were used to identify a suitable metal in the separated samples. FeSODs or enzymes belonging to the Fe-MnSOD superfamily were detected. The spectroscopic analyses showed that only Fe is present in the SOD activity bands. We found FeSOD in Synechocystis sp. PCC 6803 while two forms in G. violaceus and Geitlerinema sp. ZHR1A: FeSOD1 and FeSOD2 were present. However, no active Cu/ZnSODs were identified in G. violaceus and Geitlerinema sp. ZHR1A. We have shown that selected spectroscopic techniques can be complementary to the commonly used method of staining for SOD activity in a gel. Furthermore, the occurrence of active SODs in the cyanobacteria studied is also discussed in the context of SOD evolution in oxyphotrophs.
Collapse
|
4
|
Vachiranuvathin P, Tharasirivat V, Hemnusornnanon T, Jantaro S. Native SodB Overexpression of Synechocystis sp. PCC 6803 Improves Cell Growth Under Alcohol Stresses Whereas Its Gpx2 Overexpression Impacts on Growth Recovery from Alcohol Stressors. Appl Biochem Biotechnol 2022; 194:5748-5766. [PMID: 35819692 DOI: 10.1007/s12010-022-04061-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 11/02/2022]
Abstract
To overcome the limited resistance to alcohol stress, genetically engineered Synechocystis sp. PCC 6803 strains with overexpressions of genes related with the ROS detoxification system (sodB and gpx2, which encode superoxide dismutase and glutathione peroxidase, respectively) were developed. Three engineered strains including a sodB-overexpressing strain (OE + S), a gpx2-overexpressing strain (OE + G), and a sodB/gpx2-overexpressing strain (OE + SG) grew similarly as wild-type control under normal condition. When compared to wild-type control, OE + S and OE + SG strains grew faster for 4 days under 2.0% (v/v) ethanol and 0.3% (v/v) n-butanol conditions, as well as having higher chlorophyll a levels. On the other hand, the prominent growth recovery of OE + G and OE + SG was noted within 4 days in normal BG11 medium after treating cells with high alcohol stresses for 1 h, in particular 15% ethanol and 2.5% n-butanol. Under 4 days of recovery from butanol stress, specific levels of intracellular pigments including chlorophyll a and carotenoids were dramatically increased in all modified strains. The overexpression of antioxidant genes then revealed a significant improvement of alcohol tolerance in Synechocystis sp. PCC 6803.
Collapse
Affiliation(s)
- Phuwanet Vachiranuvathin
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Vetaka Tharasirivat
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thitaporn Hemnusornnanon
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Saowarath Jantaro
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
5
|
Rai R, Singh S, Rai KK, Raj A, Sriwastaw S, Rai LC. Regulation of antioxidant defense and glyoxalase systems in cyanobacteria. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:353-372. [PMID: 34700048 DOI: 10.1016/j.plaphy.2021.09.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/09/2021] [Accepted: 09/28/2021] [Indexed: 05/19/2023]
Abstract
Oxidative stress is common consequence of abiotic stress in plants as well as cyanobacteria caused by generation of reactive oxygen species (ROS), an inevitable product of respiration and photosynthetic electron transport. ROS act as signalling molecule at low concentration however, when its production exceeds the endurance capacity of antioxidative defence system, the organisms suffer oxidative stress. A highly toxic metabolite, methylglyoxal (MG) is also produced in cyanobacteria in response to various abiotic stresses which consequently augment the ensuing oxidative damage. Taking recourse to the common lineage of eukaryotic plants and cyanobacteria, it would be worthwhile to explore the regulatory role of glyoxalase system and antioxidative defense mechanism in combating abiotic stress in cyanobacteria. This review provides comprehensive information on the complete glyoxalase system (GlyI, GlyII and GlyIII) in cyanobacteria. Furthermore, it elucidates the recent understanding regarding the production of ROS and MG, noteworthy link between intracellular MG and ROS and its detoxification via synchronization of antioxidants (enzymatic and non-enzymatic) and glyoxalase systems using glutathione (GSH) as common co-factor.
Collapse
Affiliation(s)
- Ruchi Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shilpi Singh
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Krishna Kumar Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Alka Raj
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sonam Sriwastaw
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - L C Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
6
|
Pernil R, Schleiff E. Metalloproteins in the Biology of Heterocysts. Life (Basel) 2019; 9:E32. [PMID: 30987221 PMCID: PMC6616624 DOI: 10.3390/life9020032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022] Open
Abstract
Cyanobacteria are photoautotrophic microorganisms present in almost all ecologically niches on Earth. They exist as single-cell or filamentous forms and the latter often contain specialized cells for N₂ fixation known as heterocysts. Heterocysts arise from photosynthetic active vegetative cells by multiple morphological and physiological rearrangements including the absence of O₂ evolution and CO₂ fixation. The key function of this cell type is carried out by the metalloprotein complex known as nitrogenase. Additionally, many other important processes in heterocysts also depend on metalloproteins. This leads to a high metal demand exceeding the one of other bacteria in content and concentration during heterocyst development and in mature heterocysts. This review provides an overview on the current knowledge of the transition metals and metalloproteins required by heterocysts in heterocyst-forming cyanobacteria. It discusses the molecular, physiological, and physicochemical properties of metalloproteins involved in N₂ fixation, H₂ metabolism, electron transport chains, oxidative stress management, storage, energy metabolism, and metabolic networks in the diazotrophic filament. This provides a detailed and comprehensive picture on the heterocyst demands for Fe, Cu, Mo, Ni, Mn, V, and Zn as cofactors for metalloproteins and highlights the importance of such metalloproteins for the biology of cyanobacterial heterocysts.
Collapse
Affiliation(s)
- Rafael Pernil
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straβe 9, 60438 Frankfurt am Main, Germany.
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straβe 9, 60438 Frankfurt am Main, Germany.
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, 60438 Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straβe 15, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
7
|
Moirangthem LD, Ibrahim KS, Vanlalsangi R, Stensjö K, Lindblad P, Bhattacharya J. Molecular Cloning and Biochemical Characterization of the Iron Superoxide Dismutase from the Cyanobacterium Nostoc punctiforme ATCC 29133 and Its Response to Methyl Viologen-Induced Oxidative Stress. Mol Biotechnol 2015; 57:1003-9. [PMID: 26438488 DOI: 10.1007/s12033-015-9894-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Superoxide dismutase (SOD) detoxifies cell-toxic superoxide radicals and constitutes an important component of antioxidant machinery in aerobic organisms, including cyanobacteria. The iron-containing SOD (SodB) is one of the most abundant soluble proteins in the cytosol of the nitrogen-fixing cyanobacterium Nostoc punctiforme ATCC 29133, and therefore, we investigated its biochemical properties and response to oxidative stress. The putative SodB-encoding open reading frame Npun_R6491 was cloned and overexpressed in Escherichia coli as a C-terminally hexahistidine-tagged protein. The purified recombinant protein had a SodB specific activity of 2560 ± 48 U/mg protein at pH 7.8 and was highly thermostable. The presence of a characteristic iron absorption peak at 350 nm, and its sensitivity to H2O2 and azide, confirmed that the SodB is an iron-containing SOD. Transcript level of SodB in nitrogen-fixing cultures of N. punctiforme decreased considerably (threefold) after exposure to an oxidative stress-generating herbicide methyl viologen for 4 h. Furthermore, in-gel SOD activity analysis of such cultures grown at increasing concentrations of methyl viologen also showed a loss of SodB activity. These results suggest that SodB is not the primary scavenger of superoxide radicals induced by methyl viologen in N. punctiforme.
Collapse
Affiliation(s)
| | - Kalibulla Syed Ibrahim
- Department of Biotechnology, Mizoram University, PB No. 190, Aizawl, Mizoram, 796004, India
| | - Rebecca Vanlalsangi
- Department of Biotechnology, Mizoram University, PB No. 190, Aizawl, Mizoram, 796004, India
| | - Karin Stensjö
- Department of Chemistry- Ångström Laboratory, Science for Life Laboratory, Uppsala University, Box 523, 751 20, Uppsala, Sweden
| | - Peter Lindblad
- Department of Chemistry- Ångström Laboratory, Science for Life Laboratory, Uppsala University, Box 523, 751 20, Uppsala, Sweden
| | - Jyotirmoy Bhattacharya
- Department of Biotechnology, Mizoram University, PB No. 190, Aizawl, Mizoram, 796004, India.
| |
Collapse
|
8
|
Gunes S, Tamburaci S, Imamoglu E, Dalay MC. Determination of Superoxide Dismutase Activities in Different Cyanobacteria for Scavenging of Reactive Oxygen Species. ACTA ACUST UNITED AC 2015. [DOI: 10.1080/22311866.2014.983973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Kesheri M, Kanchan S, Richa, Sinha RP. Isolation and in silico analysis of Fe-superoxide dismutase in the cyanobacterium Nostoc commune. Gene 2014; 553:117-25. [PMID: 25303871 DOI: 10.1016/j.gene.2014.10.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 10/02/2014] [Accepted: 10/06/2014] [Indexed: 12/22/2022]
Abstract
Cyanobacteria are known to endure various stress conditions due to the inbuilt potential for oxidative stress alleviation owing to the presence of an array of antioxidants. The present study shows that Antarctic cyanobacterium Nostoc commune possesses two antioxidative enzymes viz., superoxide dismutase (SOD) and catalase that jointly cope with environmental stresses prevailing at its natural habitat. Native-PAGE analysis illustrates the presence of a single prominent isoform recognized as Fe-SOD and three distinct isoforms of catalase. The protein sequence of Fe-SOD in N. commune retrieved from NCBI protein sequence database was used for in silico analysis. 3D structure of N. commune was predicted by comparative modeling using MODELLER 9v11. Further, this model was validated for its quality by Ramachandran plot, ERRAT, Verify 3D and ProSA-web which revealed good structure quality of the model. Multiple sequence alignment showed high conservation in N and C-terminal domain regions along with all metal binding positions in Fe-SOD which were also found to be highly conserved in all 28 cyanobacterial species under study, including N. commune. In silico prediction of isoelectric point and molecular weight of Fe-SOD was found to be 5.48 and 22,342.98Da respectively. The phylogenetic tree revealed that among 28 cyanobacterial species, Fe-SOD in N. commune was the closest evolutionary homolog of Fe-SOD in Nostoc punctiforme as evident by strong bootstrap value. Thus, N. commune may serve as a good biological model for studies related to survival of life under extreme conditions prevailing at the Antarctic region. Moreover cyanobacteria may be exploited for biochemical and biotechnological applications of enzymatic antioxidants.
Collapse
Affiliation(s)
- Minu Kesheri
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| | - Swarna Kanchan
- Department of Biological Science, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India
| | - Richa
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| | - Rajeshwar P Sinha
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
10
|
Essential roles of iron superoxide dismutase in photoautotrophic growth of Synechocystis sp. PCC 6803 and heterogeneous expression of marine Synechococcus sp. CC9311 copper/zinc superoxide dismutase within its sodB knockdown mutant. Microbiology (Reading) 2014; 160:228-241. [DOI: 10.1099/mic.0.073080-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synechocystis sp. PCC 6803 possesses only one sod gene, sodB, encoding iron superoxide dismutase (FeSOD). It could not be knocked out completely by direct insertion of the kanamycin resistance cassette. When the promoter of sodB in WT Synechocystis was replaced with the copper-regulated promoter PpetE, a completely segregated PpetE–sodB strain could be obtained. When this strain was cultured in copper-starved BG11 medium, the chlorophyll a content was greatly reduced, growth was seriously inhibited and the strain was nearly dead during the 8 days of growth, whilst the WT strain grew well under the same growth conditions. These results indicated that sodB was essential for photoautotrophic growth of Synechocystis. The reduction of sodB gene copies in the Synechocystis genome rendered the cells more sensitive to oxidative stress produced by methyl viologen and norflurazon. sodB still could not be knocked out completely after active expression of sodC (encoding Cu/ZnSOD) from Synechococcus sp. CC9311 in the neutral site slr0168 under the control of the psbAII promoter, which means the function of FeSOD could not be complemented completely by Cu/ZnSOD. Heterogeneously expressed sodC increased the oxidation and photoinhibition tolerance of the Synechocystis sodB knockdown mutant. Membrane fractionation followed by immunoblotting revealed that FeSOD was localized in the cytoplasm, and Cu/ZnSOD was localized in the soluble and thylakoid membrane fractions of the transformed Synechocystis. Cu/ZnSOD has a predicted N-terminal signal peptide, so it is probably a lumen protein. The different subcellular localization of these two SODs may have resulted in the failure of substitution of sodC for sodB.
Collapse
|
11
|
Banerjee M, Raghavan PS, Ballal A, Rajaram H, Apte SK. Oxidative stress management in the filamentous, heterocystous, diazotrophic cyanobacterium, Anabaena PCC7120. PHOTOSYNTHESIS RESEARCH 2013; 118:59-70. [PMID: 24122336 DOI: 10.1007/s11120-013-9929-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 09/23/2013] [Indexed: 05/26/2023]
Abstract
Reactive oxygen species (ROS) are inevitably generated as by-products of respiratory/photosynthetic electron transport in oxygenic photoautotrophs. Unless effectively scavenged, these ROS can damage all cellular components. The filamentous, heterocystous, nitrogen-fixing strains of the cyanobacterium, Anabaena, serve as naturally abundant contributors of nitrogen biofertilizers in tropical rice paddy fields. Anabaena strains are known to tolerate several abiotic stresses, such as heat, UV, gamma radiation, desiccation, etc., that are known to generate ROS. ROS are detoxified by specific antioxidant enzymes like superoxide dismutases (SOD), catalases and peroxiredoxins. The genome of Anabaena PCC7120 encodes two SODs, two catalases and seven peroxiredoxins, indicating the presence of an elaborate antioxidant enzymatic machinery to defend its cellular components from ROS. This article summarizes recent findings and depicts important perspectives in oxidative stress management in Anabaena PCC7120.
Collapse
Affiliation(s)
- Manisha Banerjee
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India
| | | | | | | | | |
Collapse
|
12
|
Pinto F, van Elburg KA, Pacheco CC, Lopo M, Noirel J, Montagud A, Urchueguía JF, Wright PC, Tamagnini P. Construction of a chassis for hydrogen production: physiological and molecular characterization of a Synechocystis sp. PCC 6803 mutant lacking a functional bidirectional hydrogenase. MICROBIOLOGY-SGM 2011; 158:448-464. [PMID: 22096147 DOI: 10.1099/mic.0.052282-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cyanobacteria are photosynthetic prokaryotes that are promising 'low-cost' microbial cell factories due to their simple nutritional requirements and metabolic plasticity, and the availability of tools for their genetic manipulation. The unicellular non-nitrogen-fixing Synechocystis sp. PCC 6803 is the best studied cyanobacterial strain and its genome was the first to be sequenced. The vast amount of physiological and molecular data available, together with a relatively small genome, makes Synechocystis suitable for computational metabolic modelling and to be used as a photoautotrophic chassis in synthetic biology applications. To prepare it for the introduction of a synthetic hydrogen producing device, a Synechocystis sp. PCC 6803 deletion mutant lacking an active bidirectional hydrogenase (ΔhoxYH) was produced and characterized at different levels: physiological, proteomic and transcriptional. The results showed that, under conditions favouring hydrogenase activity, 17 of the 210 identified proteins had significant differential fold changes in comparisons of the mutant with the wild-type. Most of these proteins are related to the redox and energy state of the cell. Transcriptional studies revealed that only six genes encoding those proteins exhibited significant differences in transcript levels. Moreover, the mutant exhibits similar growth behaviour compared with the wild-type, reflecting Synechocystis plasticity and metabolic adaptability. Overall, this study reveals that the Synechocystis ΔhoxYH mutant is robust and can be used as a photoautotrophic chassis for the integration of synthetic constructs, i.e. molecular constructs assembled from well characterized biological and/or synthetic parts (e.g. promoters, regulators, coding regions, terminators) designed for a specific purpose.
Collapse
Affiliation(s)
- Filipe Pinto
- Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Karin A van Elburg
- Biological and Environmental Systems Group, ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mapping Street, Sheffield S1 3JD, UK
| | - Catarina C Pacheco
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Miguel Lopo
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Josselin Noirel
- Biological and Environmental Systems Group, ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mapping Street, Sheffield S1 3JD, UK
| | - Arnau Montagud
- Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, Camí de Vera, E-46071 Valencia, Spain
| | - Javier F Urchueguía
- Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, Camí de Vera, E-46071 Valencia, Spain
| | - Phillip C Wright
- Biological and Environmental Systems Group, ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mapping Street, Sheffield S1 3JD, UK
| | - Paula Tamagnini
- Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| |
Collapse
|
13
|
Raghavan PS, Rajaram H, Apte SK. Nitrogen status dependent oxidative stress tolerance conferred by overexpression of MnSOD and FeSOD proteins in Anabaena sp. strain PCC7120. PLANT MOLECULAR BIOLOGY 2011; 77:407-417. [PMID: 21882041 DOI: 10.1007/s11103-011-9821-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/21/2011] [Indexed: 05/31/2023]
Abstract
The heterocystous nitrogen-fixing cyanobacterium, Anabaena sp. strain PCC7120 displayed two superoxide dismutase (SOD) activities, namely FeSOD and MnSOD. Prolonged exposure of Anabaena PCC7120 cells to methyl viologen mediated oxidative stress resulted in loss of both SOD activities and induced cell lysis. The two SOD proteins were individually overexpressed constitutively in Anabaena PCC7120, by genetic manipulation. Under nitrogen-fixing conditions, overexpression of MnSOD (sodA) enhanced oxidative stress tolerance, while FeSOD (sodB) overexpression was detrimental. Under nitrogen supplemented conditions, overexpression of either SOD protein, especially FeSOD, conferred significant tolerance against oxidative stress. The results demonstrate a nitrogen status-dependent protective role of individual superoxide dismutases in Anabaena PCC7120 during oxidative stress.
Collapse
Affiliation(s)
- Prashanth S Raghavan
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | | | | |
Collapse
|
14
|
Rowland JG, Simon WJ, Prakash JSS, Slabas AR. Proteomics Reveals a Role for the RNA Helicase crhR in the Modulation of Multiple Metabolic Pathways during Cold Acclimation of Synechocystis sp. PCC6803. J Proteome Res 2011; 10:3674-89. [DOI: 10.1021/pr200299t] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- John G. Rowland
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - William J. Simon
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Jogadhenu S. S. Prakash
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - Antoni R. Slabas
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
15
|
Jensen SI, Steunou AS, Bhaya D, Kühl M, Grossman AR. In situ dynamics of O2, pH and cyanobacterial transcripts associated with CCM, photosynthesis and detoxification of ROS. ISME JOURNAL 2010; 5:317-28. [PMID: 20740024 DOI: 10.1038/ismej.2010.131] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The relative abundance of transcripts encoding proteins involved in inorganic carbon concentrating mechanisms (CCM), detoxification of reactive oxygen species (ROS) and photosynthesis in the thermophilic cyanobacterium Synechococcus OS-B' was measured in hot spring microbial mats over two diel cycles, and was coupled with in situ determinations of incoming irradiance and microenvironmental dynamics of O(2) and pH. Fluctuations in pH and O(2) in the mats were largely driven by the diel cycle of solar irradiance, with a pH variation from ∼7.0 to ∼9.5, and O(2) levels ranging from anoxia to supersaturation during night and day, respectively. Levels of various transcripts from mat cyanobacteria revealed several patterns that correlated with incident irradiance, O(2) and pH within the mat matrix. Transcript abundances for most genes increased during the morning dark-light transition. Some transcripts remained at a near constant level throughout the light period, whereas others showed an additional increase in abundance as the mat underwent transition from low-to-high light (potentially reflecting changes in O(2) concentration and pH), followed by either a decreased abundance in the early afternoon, or a gradual decline during the early afternoon and into the evening. One specific transcipt, psbA1, was the lowest during mid-day under high irradiance and increased when the light levels declined. We discuss these complex in situ transcriptional patterns with respect to environmental and endogenous cues that might impact and regulate transcription over the diel cycle.
Collapse
Affiliation(s)
- Sheila I Jensen
- Department of Biology, Marine Biological Laboratory, University of Copenhagen, Helsingør, Denmark.
| | | | | | | | | |
Collapse
|
16
|
Affiliation(s)
- Amel Latifi
- Aix-Marseille Université and Laboratoire de Chimie Bactérienne, CNRS-UPR9043, Marseille, France.
| | | | | |
Collapse
|
17
|
Tabei Y, Okada K, Makita N, Tsuzuki M. Light-induced gene expression of fructose 1,6-bisphosphate aldolase during heterotrophic growth in a cyanobacterium, Synechocystis sp. PCC 6803. FEBS J 2008; 276:187-98. [PMID: 19019077 DOI: 10.1111/j.1742-4658.2008.06772.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Synechocystis sp. PCC 6803 exhibits light-activated heterotrophic growth (LAHG) under dark conditions with glucose as a carbon source. The light activation is remarkable at a late period of photoautotrophic preculture, such as the late-linear and stationary growth phases. To understand the physiological effects of light irradiation and glucose under LAHG conditions, their effects on the expression of soluble proteins were analyzed by means of 2D-PAGE. Various soluble proteins, which were minimal under photoautotrophic preculture conditions, were observed clearly under LAHG conditions, suggesting that proteins were synthesized actively under these conditions. Fructose 1,6-bisphosphate aldolase, one of the glycolytic enzymes, was found to be induced under LAHG conditions on 2D-PAGE. The activity of fructose 1,6-bisphosphate aldolase, which had decreased during photoautotrophic preculture, also increased under LAHG conditions, similar to the mRNA level of the encoding gene, fbaA. In addition, we found that a deletion mutant of sll1330, a putative gene containing a helix-turn-helix DNA-binding motif, could not grow under LAHG conditions, whereas it could grow photoautotrophically. The increases in the protein level of FbaA and fbaA gene expression observed in wild-type cells under LAHG conditions were greatly inhibited in the deletion mutant. These results suggest that the regulation of fbaA gene expression by way of sll1330 is one of the important processes in Synechocystis sp. PCC 6803 under light pulse LAHG conditions.
Collapse
Affiliation(s)
- Yosuke Tabei
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo, Japan.
| | | | | | | |
Collapse
|
18
|
Priya B, Premanandh J, Dhanalakshmi RT, Seethalakshmi T, Uma L, Prabaharan D, Subramanian G. Comparative analysis of cyanobacterial superoxide dismutases to discriminate canonical forms. BMC Genomics 2007; 8:435. [PMID: 18042279 PMCID: PMC2234264 DOI: 10.1186/1471-2164-8-435] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 11/27/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Superoxide dismutases (SOD) are ubiquitous metalloenzymes that catalyze the disproportion of superoxide to peroxide and molecular oxygen through alternate oxidation and reduction of their metal ions. In general, SODs are classified into four forms by their catalytic metals namely; FeSOD, MnSOD, Cu/ZnSOD and NiSOD. In addition, a cambialistic form that uses Fe/Mn in its active site also exists. Cyanobacteria, the oxygen evolving photosynthetic prokaryotes, produce reactive oxygen species that can damage cellular components leading to cell death. Thus, the co-evolution of an antioxidant system was necessary for the survival of photosynthetic organisms with SOD as the initial enzyme evolved to alleviate the toxic effect. Cyanobacteria represent the first oxygenic photoautotrophs and their SOD sequences available in the databases lack clear annotation. Hence, the present study focuses on structure and sequence pattern of subsets of cyanobacterial superoxide dismutases. RESULT The sequence conservation and structural analysis of Fe (Thermosynechococcus elongatus BP1) and MnSOD (Anabaena sp. PCC7120) reveal the sharing of N and C terminal domains. At the C terminal domain, the metal binding motif in cyanoprokaryotes is DVWEHAYY while it is D-X-[WF]-E-H-[STA]-[FY]-[FY] in other pro- and eukaryotes. The cyanobacterial FeSOD differs from MnSOD at least in three ways viz. (i) FeSOD has a metal specific signature F184X3A188Q189.......T280......F/Y303 while, in Mn it is R184X3G188G189......G280......W303, (ii) aspartate ligand forms a hydrogen bond from the active site with the outer sphere residue of W243 in Fe where as it is Q262 in MnSOD; and (iii) two unique lysine residues at positions 201 and 255 with a photosynthetic role, found only in FeSOD. Further, most of the cyanobacterial Mn metalloforms have a specific transmembrane hydrophobic pocket that distinguishes FeSOD from Mn isoform. Cyanobacterial Cu/ZnSOD has a copper domain and two different signatures G-F-H-[ILV]-H-x-[NGT]-[GPDA]-[SQK]-C and G-[GA]-G-G-[AEG]-R-[FIL]-[AG]-C-G, while Ni isoform has an nickel containing SOD domain containing a Ni-hook HCDGPCVYDPA. CONCLUSION The present analysis unravels the ambiguity among cyanobacterial SOD isoforms. NiSOD is the only SOD found in lower forms; whereas, Fe and Mn occupy the higher orders of cyanobacteria. In conclusion, cyanobacteria harbor either Ni alone or a combination of Fe and Ni or Fe and Mn as their catalytic active metal while Cu/Zn is rare.
Collapse
Affiliation(s)
- Balakrishnan Priya
- National Facility for Marine Cyanobacteria (Sponsored by Department of Biotechnology, Government of India), Bharathidasan University, Tiruchirappalli - 620 024, India.
| | | | | | | | | | | | | |
Collapse
|