1
|
Bender FR, Nagamatsu ST, Delamuta JRM, Ribeiro RA, Nogueira MA, Hungria M. Genetic variation in symbiotic islands of natural variant strains of soybean Bradyrhizobium japonicum and Bradyrhizobium diazoefficiens differing in competitiveness and in the efficiency of nitrogen fixation. Microb Genom 2022; 8:000795. [PMID: 35438622 PMCID: PMC9453064 DOI: 10.1099/mgen.0.000795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/07/2022] [Indexed: 11/18/2022] Open
Abstract
Soybean is the most important legume cropped worldwide and can highly benefit from the biological nitrogen fixation (BNF) process. Brazil is recognized for its leadership in the use of inoculants and two strains, Bradyrhizobium japonicum CPAC 15 (=SEMIA 5079) and Bradyrhizobium diazoefficiens CPAC 7 (=SEMIA 5080) compose the majority of the 70 million doses of soybean inoculants commercialized yearly in the country. We studied a collection of natural variants of these two strains, differing in properties of competitiveness and efficiency of BNF. We sequenced the genomes of the parental strain SEMIA 566 of B. japonicum, of three natural variants of this strain (S 204, S 340 and S 370), and compared with another variant of this group, strain CPAC 15. We also sequenced the genome of the parental strain SEMIA 586 of B. diazoefficiens, of three natural variants of this strain (CPAC 390, CPAC 392 and CPAC 394) and compared with the genome of another natural variant, strain CPAC 7. As the main genes responsible for nodulation (nod, noe, nol) and BNF (nif, fix) in soybean Bradyrhizobium are located in symbiotic islands, our objective was to identify genetic variations located in this region, including single nucleotide polymorphisms (SNPs) and insertions and deletions (indels), that could be potentially related to their different symbiotic phenotypes. We detected 44 genetic variations in the B. japonicum strains and three in B. diazoefficiens. As the B. japonicum strains have gone through a longer period of adaptation to the soil, the higher number of genetic variations could be explained by survival strategies under the harsh environmental conditions of the Brazilian Cerrado biome. Genetic variations were detected in genes enconding proteins such as a dephospho-CoA kinase, related to the CoA biosynthesis; a glucosamine-fructose-6-phosphate aminotransferase, key regulator of the hexosamine biosynthetic pathway; a LysR family transcriptional regulator related to nodulation genes; and NifE and NifS proteins, directly related to the BNF process. We suggest potential genetic variations related to differences in the symbiotic phenotypes.
Collapse
Affiliation(s)
- Flavia Raquel Bender
- Department of Biotechnology, Universidade Estadual de Londrina, C.P. 10011, 86057-970 Londrina, Paraná, Brazil
- Soil Biotechnology Laboratory, Embrapa Soja, C.P. 4006, 86085-981, Londrina-PR, Brazil
| | - Sheila Tiemi Nagamatsu
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Jakeline Renata Marçon Delamuta
- Soil Biotechnology Laboratory, Embrapa Soja, C.P. 4006, 86085-981, Londrina-PR, Brazil
- CNPq, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001, Brasília, Federal District, Brazil
| | - Renan Augusto Ribeiro
- CNPq, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001, Brasília, Federal District, Brazil
| | - Marco Antonio Nogueira
- Soil Biotechnology Laboratory, Embrapa Soja, C.P. 4006, 86085-981, Londrina-PR, Brazil
- CNPq, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001, Brasília, Federal District, Brazil
| | - Mariangela Hungria
- Department of Biotechnology, Universidade Estadual de Londrina, C.P. 10011, 86057-970 Londrina, Paraná, Brazil
- Soil Biotechnology Laboratory, Embrapa Soja, C.P. 4006, 86085-981, Londrina-PR, Brazil
- CNPq, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001, Brasília, Federal District, Brazil
| |
Collapse
|
2
|
Gomes DF, da Silva Batista JS, Rolla AAP, da Silva LP, Bloch C, Galli-Terasawa LV, Hungria M. Proteomic analysis of free-living Bradyrhizobium diazoefficiens: highlighting potential determinants of a successful symbiosis. BMC Genomics 2014; 15:643. [PMID: 25086822 PMCID: PMC4287336 DOI: 10.1186/1471-2164-15-643] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/25/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Strain CPAC 7 (=SEMIA 5080) was recently reclassified into the new species Bradyrhizobium diazoefficiens; due to its outstanding efficiency in fixing nitrogen, it has been used in commercial inoculants for application to crops of soybean [Glycine max (L.) Merr.] in Brazil and other South American countries. Although the efficiency of B. diazoefficiens inoculant strains is well recognized, few data on their protein expression are available. RESULTS We provided a two-dimensional proteomic reference map of CPAC 7 obtained under free-living conditions, with the successful identification of 115 spots, representing 95 different proteins. The results highlighted the expression of molecular determinants potentially related to symbiosis establishment (e.g. inositol monophosphatase, IMPase), fixation of atmospheric nitrogen (N2) (e.g. NifH) and defenses against stresses (e.g. chaperones). By using bioinformatic tools, it was possible to attribute probable functions to ten hypothetical proteins. For another ten proteins classified as "NO related COG" group, we analyzed by RT-qPCR the relative expression of their coding-genes in response to the nodulation-gene inducer genistein. Six of these genes were up-regulated, including blr0227, which may be related to polyhydroxybutyrate (PHB) biosynthesis and competitiveness for nodulation. CONCLUSIONS The proteomic map contributed to the identification of several proteins of B. diazoefficiens under free-living conditions and our approach-combining bioinformatics and gene-expression assays-resulted in new information about unknown genes that might play important roles in the establishment of the symbiosis with soybean.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mariangela Hungria
- Embrapa Soja, Embrapa Soja, C,P, 231, 86001-970 Londrina, Paraná, Brazil.
| |
Collapse
|
3
|
Siqueira AF, Ormeño-Orrillo E, Souza RC, Rodrigues EP, Almeida LGP, Barcellos FG, Batista JSS, Nakatani AS, Martínez-Romero E, Vasconcelos ATR, Hungria M. Comparative genomics of Bradyrhizobium japonicum CPAC 15 and Bradyrhizobium diazoefficiens CPAC 7: elite model strains for understanding symbiotic performance with soybean. BMC Genomics 2014; 15:420. [PMID: 24888481 PMCID: PMC4070871 DOI: 10.1186/1471-2164-15-420] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 05/20/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The soybean-Bradyrhizobium symbiosis can be highly efficient in fixing nitrogen, but few genomic sequences of elite inoculant strains are available. Here we contribute with information on the genomes of two commercial strains that are broadly applied to soybean crops in the tropics. B. japonicum CPAC 15 (=SEMIA 5079) is outstanding in its saprophytic capacity and competitiveness, whereas B. diazoefficiens CPAC 7 (=SEMIA 5080) is known for its high efficiency in fixing nitrogen. Both are well adapted to tropical soils. The genomes of CPAC 15 and CPAC 7 were compared to each other and also to those of B. japonicum USDA 6T and B. diazoefficiens USDA 110T. RESULTS Differences in genome size were found between species, with B. japonicum having larger genomes than B. diazoefficiens. Although most of the four genomes were syntenic, genome rearrangements within and between species were observed, including events in the symbiosis island. In addition to the symbiotic region, several genomic islands were identified. Altogether, these features must confer high genomic plasticity that might explain adaptation and differences in symbiotic performance. It was not possible to attribute known functions to half of the predicted genes. About 10% of the genomes was composed of exclusive genes of each strain, but up to 98% of them were of unknown function or coded for mobile genetic elements. In CPAC 15, more genes were associated with secondary metabolites, nutrient transport, iron-acquisition and IAA metabolism, potentially correlated with higher saprophytic capacity and competitiveness than seen with CPAC 7. In CPAC 7, more genes were related to the metabolism of amino acids and hydrogen uptake, potentially correlated with higher efficiency of nitrogen fixation than seen with CPAC 15. CONCLUSIONS Several differences and similarities detected between the two elite soybean-inoculant strains and between the two species of Bradyrhizobium provide new insights into adaptation to tropical soils, efficiency of N2 fixation, nodulation and competitiveness.
Collapse
Affiliation(s)
- Arthur Fernandes Siqueira
- />Department Biochemistry and Biotechnology, Universidade Estadual de Londrina (UEL), C.P. 60001, Londrina, PR 86051-990 Brazil
- />Embrapa Soja, C.P. 231, Londrina, PR 86001-970 Brazil
| | - Ernesto Ormeño-Orrillo
- />Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Rangel Celso Souza
- />Laboratório Nacional de Computação Científica, Rua Getúlio Vargas 333, Petrópolis, RJ 25651-071 Brazil
| | | | - Luiz Gonzaga Paula Almeida
- />Laboratório Nacional de Computação Científica, Rua Getúlio Vargas 333, Petrópolis, RJ 25651-071 Brazil
| | | | - Jesiane Stefânia Silva Batista
- />Department Structural, Molecular and Genetic Biology, Universidade Estadual de Ponta Grossa (UEPG), Av. General Carlos Cavalcanti 4748, Ponta Grossa, PR 84030-900 Brazil
| | | | | | | | - Mariangela Hungria
- />Department Biochemistry and Biotechnology, Universidade Estadual de Londrina (UEL), C.P. 60001, Londrina, PR 86051-990 Brazil
- />Embrapa Soja, C.P. 231, Londrina, PR 86001-970 Brazil
| |
Collapse
|
4
|
da Silva Batista JS, Hungria M. Proteomics reveals differential expression of proteins related to a variety of metabolic pathways by genistein-induced Bradyrhizobium japonicum strains. J Proteomics 2011; 75:1211-9. [PMID: 22119543 DOI: 10.1016/j.jprot.2011.10.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 10/28/2011] [Accepted: 10/31/2011] [Indexed: 11/19/2022]
Abstract
The rhizobia-legume symbiosis requires a coordinated molecular interaction between the symbionts, initiated by seed and root exudation of several compounds, mainly flavonoids, that trigger the expression of nodulation genes in the bacteria. Since the role of flavonoids seems to be broader than the induction of nodulation genes, we aimed at characterizing genistein-induced proteins of Bradyrhizobium japonicum CPAC 15 (=SEMIA 5079), used in commercial soybean inoculants in Brazil, and of two genetically related strains grown in vitro. Whole-cell proteins were extracted both from induced (1 μM genistein) and from non-induced cultures of the three strains, and separated by two-dimensional electrophoresis. Spot profiles were compared between the two conditions and selected spots were excised and identified by mass spectrometry. Forty-seven proteins were significantly induced by genistein, including several hypothetical proteins, the cytoplasmic flagellar component FliG, periplasmic ABC transporters, a protein related to biosynthesis of exopolysaccharides (ExoN), and proteins involved in redox-state maintenance. Noteworthy was the induction of the PhyR-σ(EcfG) regulon, recently demonstrated to be involved in the symbiotic efficiency of, and general stress response in B. japonicum. Our results confirm that the role of flavonoids, such as genistein, can go far beyond the expression of nodulation-related proteins in B. japonicum.
Collapse
|
5
|
da Silva Batista JS, Torres AR, Hungria M. Towards a two-dimensional proteomic reference map of Bradyrhizobium japonicum
CPAC 15: Spotlighting “hypothetical proteins”. Proteomics 2010; 10:3176-89. [DOI: 10.1002/pmic.201000092] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
6
|
Xie F, Lei L, Du C, Li S, Han W, Ren Z. Genomic differences between Actinobacillus pleuropneumoniae serotypes 1 and 3 and the diversity distribution among 15 serotypes. FEMS Microbiol Lett 2009; 303:147-55. [PMID: 20030726 DOI: 10.1111/j.1574-6968.2009.01870.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The limited information on the genetic differences among the 15 currently known serotypes of Actinobacillus pleuropneumoniae has significantly hampered the development of typing-based diagnostic methods and multivalent vaccines. In this study, we compared the genomic differences between A. pleuropneumoniae strains CVCC259 (serotype 1) and CVCC261 (serotype 3) by representational difference analysis. Of the eight differential DNA sequences in the CVCC259 strain and 11 differential DNA sequences in the CVCC261 strain that we identified, seven represent known virulent genes, 10 encode putative proteins, and two encode hypothetical proteins. We also investigated the distribution of these 19 sequences among the 15 serotypes, and each serotype showed a different distribution pattern. The autotransporter adhesin occurred as a novel putative virulence factor in serotypes 1, 5, 7, 8, 9, and 11. Notably, the presence of wzm and wzt in serotypes 1, 9, and 11 and the diverse distribution of wzz and wzy in the other serotypes suggest the presence of different O-antigen biosynthesis pathways among serotypes. The information on the differential distribution of these DNA sequences in the 15 serotypes of A. pleuropneumoniae may contribute to future research on the pathogenic mechanisms of different serotypes, typing-based diagnosis methods, and multivalent vaccines.
Collapse
Affiliation(s)
- Fang Xie
- College of Animal Science and Veterinary Medicine, Jinlin University, Changchun, China
| | | | | | | | | | | |
Collapse
|