1
|
Ho CH, Yang TY, Tseng SP, Su PY. Antimicrobial efficacy and amino acid substitutions associated with susceptibility to the tellurium compound AS101 against Haemophilus influenzae and Haemophilus parainfluenzae. Int Microbiol 2025; 28:473-484. [PMID: 38987387 DOI: 10.1007/s10123-024-00558-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
The tellurite toxicity in Haemophilus influenzae and H. parainfluenzae remains unclear. To understand the potential of tellurite as a therapeutic option for these bacteria, we investigated the antimicrobial efficacy of AS101, a tellurium compound, against H. influenzae and H. parainfluenzae and the molecular basis of their differences in AS101 susceptibility. Through broth microdilution, we examined the minimum inhibitory concentration (MIC) of AS101 in 51 H. influenzae and 28 H. parainfluenzae isolates. Whole-genome sequencing was performed on the H. influenzae isolates to identify genetic variations associated with AS101 susceptibility. The MICs of AS101 were ≦ 4, 16-32, and ≧ 64 μg/mL in 9 (17.6%), 12 (23.5%), and 30 (58.8%) H. influenzae isolates, respectively, whereas ≦ 0.5 μg/mL in all H. parainfluenzae isolates, including multidrug-resistant isolates. Time-killing kinetic assay and scanning electron microscopy revealed the in vitro bactericidal activity of AS101 against H. parainfluenzae. Forty variations in nine tellurite resistance-related genes were associated with AS101 susceptibility. Logistic regression, receiver operator characteristic curve analysis, Venn diagram, and protein sequence alignment indicated that Val195Ile substitution in TerC, Ser93Gly in Gor (glutathione reductase), Pro44Ala/Ala50Pro in NapB (nitrate reductase), Val307Leu in TehA (tellurite resistance protein), Cys105Arg in CysK (cysteine synthase), and Thr364Ser in Csd (Cysteine desulfurase) were strongly associated with reduced AS101 susceptibility, whereas Ser155Pro in TehA with increased AS101 susceptibility. In conclusions, the antimicrobial efficacy of AS101 is high against H. parainfluenzae but low against H. influenzae. Genetic variations and corresponding protein changes relevant to AS101 non-susceptibility in H. influenzae were identified.
Collapse
Affiliation(s)
- Cheng-Hsun Ho
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, No.8, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung City, 82445, Taiwan.
| | - Tsung-Ying Yang
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, No.8, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung City, 82445, Taiwan
| | - Sung-Pin Tseng
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Pei-Yi Su
- Department of Laboratory Medicine, E-DA Hospital, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Li R, Shen X, Li Z, Shen J, Tang H, Xu H, Shen J, Xu Y. Combination of AS101 and Mefloquine Inhibits Carbapenem-Resistant Pseudomonas aeruginosa in vitro and in vivo. Infect Drug Resist 2023; 16:7271-7288. [PMID: 38023412 PMCID: PMC10664714 DOI: 10.2147/idr.s427232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Background In recent years, carbapenem-resistant Pseudomonas aeruginosa (CRPA) has spread around the world, leading to a high mortality and close attention of medical community. In this study, we aim to find a new strategy of treatment for CRPA infections. Methods Eight strains of CRPA were collected, and PCR detected the multi-locus sequence typing (MLST). The antimicrobial susceptibility test was conducted using the VITEK@2 compact system. The minimum inhibitory concentration (MIC) for AS101 and mefloquine was determined using the broth dilution method. Antibacterial activity was tested in vitro and in vivo through the chessboard assay, time killing assay, and a mouse model. The mechanism of AS101 combined with mefloquine against CRPA was assessed through the biofilm formation inhibition assay, electron microscopy, and detection of reactive oxygen species (ROS). Results The results demonstrated that all tested CRPA strains exhibited multidrug resistance. Moreover, our investigation revealed a substantial synergistic antibacterial effect of AS101-mefloquine in vitro. The assay for inhibiting biofilm formation indicated that AS101-mefloquine effectively suppressed the biofilm formation of CRPA-5 and CRPA-6. Furthermore, AS101-mefloquine were observed to disrupt the bacterial cell wall and enhance the permeability of the cell membrane. This effect was achieved by stimulating the production of ROS, which in turn hindered the growth of CRPA-3. To evaluate the therapeutic potential, a murine model of CRPA-3 peritoneal infection was established. Notably, AS101-mefloquine administration resulted in a significant reduction in bacterial load within the liver, kidney, and spleen of mice after 72 hours of treatment. Conclusion The present study showed that the combination of AS101 and mefloquine yielded a notable synergistic bacteriostatic effect both in vitro and in vivo, suggesting a potential clinical application of this combination in the treatment of CRPA.
Collapse
Affiliation(s)
- Rongrong Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, People’s Republic of China
| | - Xuhang Shen
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Zhengyuan Li
- Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Jilong Shen
- Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, People’s Republic of China
| | - Hao Tang
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Huaming Xu
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, People’s Republic of China
| | - Jilu Shen
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Anhui Public Health Clinical Center, Hefei, People’s Republic of China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| |
Collapse
|
3
|
Yang TY, Hung WC, Tsai TH, Lu PL, Wang SF, Wang LC, Lin YT, Tseng SP. Potentials of organic tellurium-containing compound AS101 to overcome carbapenemase-producing Escherichia coli. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:1016-1025. [PMID: 37516546 DOI: 10.1016/j.jmii.2023.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/11/2023] [Accepted: 07/06/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND The issue of carbapenem-resistant Escherichia coli was aggravated yearly. The previous studies reported the varied but critical epidemiology of carbapenem-resistant E. coli among which the carbapenemase-producing strains were regarded as one of the most notorious issues. AS101, an organic tellurium-containing compound undergoing clinical trials, was revealed with antibacterial activities. However, little is known about the antibacterial effect of AS101 against carbapenemase-producing E. coli (CPEC). MATERIALS AND METHODS The minimum inhibitory concentration (MIC) of AS101 against the 15 isolates was examined using a broth microdilution method. The scanning electron microscopy, pharmaceutical manipulations, reactive oxygen species level, and DNA fragmentation assay were carried out to investigate the antibacterial mechanism. The sepsis mouse model was employed to assess the in vivo treatment effect. RESULTS The blaNDM (33.3%) was revealed as the dominant carbapenemase gene among the 15 CPEC isolates, followed by the blaKPC gene (26.7%). The MICs of AS101 against the 15 isolates ranged from 0.5 to 32 μg/ml, and 99.9% of bacterial eradication was observed at 8 h, 4 h, and 2 h for 1×, 2×, and 4 × MIC, respectively. The mechanistic investigations suggest that AS101 would enter the bacterial cell, and induce ROS generation, leading to DNA fragmentation. The in vivo study exhibited that AS101 possessed a steady treatment effect in a sepsis mouse model, with an up to 83.3% of survival rate. CONCLUSION The in vitro activities, mechanisms, and in vivo study of AS101 against CPEC were unveiled. Our finding provided further evidence for the antibiotic development of AS101.
Collapse
Affiliation(s)
- Tsung-Ying Yang
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung, Taiwan; Research Organization for Nano and Life Innovation, Future Innovation Institute, Waseda University, Japan; Research Institute for Science and Engineering, Waseda University, Japan; School of Education, Waseda University, Japan
| | - Wei-Chun Hung
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsung-Han Tsai
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Liang Lu
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Sheng-Fan Wang
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Liang-Chun Wang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yu-Tzu Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan.
| | - Sung-Pin Tseng
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan; Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan; Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
4
|
Tripathi A, Khan A, Kiran P, Shetty H, Srivastava R. Screening of AS101 analog, organotellurolate (IV) compound 2 for its in vitro biocompatibility, anticancer, and antibacterial activities. Amino Acids 2023:10.1007/s00726-023-03280-7. [PMID: 37227510 DOI: 10.1007/s00726-023-03280-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
Organotellurium compounds are being well researched as potential candidates for their functional roles in therapeutic and clinical biology. Here, we report the in vitro anticancer and antibacterial activities of an AS101 analog, cyclic zwitterionic organotellurolate (IV) compound 2 [Te-{CH2CH(NH3+)COO}(Cl)3]. Different concentrations of compound 2 were exposed to fibroblast L929 and breast cancer MCF-7 cell lines to study its effect on cell viability. The fibroblast cells with good viability confirmed the biocompatibility, and compound 2 also was less hemolytic on RBCs. A cytotoxic effect on MCF-7 breast cancer cell line investigated compound 2 to be anti-cancerous with IC50 value of 2.86 ± 0.02 µg/mL. The apoptosis was confirmed through the cell cycle phase arrest of the organotellurolate (IV) compound 2. Examination of the antibacterial potency compound 2 was done based on the agar disk diffusion, minimum inhibitory concentration, and time-dependent assay for the Gram-positive Bacillus subtilis and Gram-negative Pseudomonas putida. For both bacterial strains, tests were performed with the concentration range of 3.9-500 μg/mL, and the minimum inhibition concentration value was found to be 125 μg/mL. The time-dependent assay suggested the bactericidal activity of organotellurolate (IV) compound, 2 against the bacterial strains.
Collapse
Affiliation(s)
- Abhishek Tripathi
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Amreen Khan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
- Center for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Pallavi Kiran
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Harsha Shetty
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
5
|
Synergistic Combination of AS101 and Azidothymidine against Clinical Isolates of Carbapenem-Resistant Klebsiella pneumoniae. Pathogens 2021; 10:pathogens10121552. [PMID: 34959507 PMCID: PMC8706163 DOI: 10.3390/pathogens10121552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Owing to the over usage of carbapenems, carbapenem resistance has become a vital threat worldwide, and, thus, the World Health Organization announced the carbapenem-resistant Enterobacteriaceae (CRE) as the critical priority for antibiotic development in 2017. In the current situation, combination therapy would be one solution against CRE. Azidothymidine (AZT), a thymidine analog, has demonstrated its synergistically antibacterial activities with other antibiotics. The unexpected antimicrobial activity of the immunomodulator ammonium trichloro(dioxoethylene-o,o')tellurate (AS101) has been reported against carbapenem-resistant Klebsiella pneumoniae (CRKP). Here, we sought to investigate the synergistic activity between AS101 and AZT against 12 CRKP clinical isolates. According to the gene detection results, the blaOXA-1 (7/12, 58.3%), blaDHA (7/12, 58.3%), and blaKPC (7/12, 58.3%) genes were the most prevalent ESBL, AmpC, and carbapenemase genes, respectively. The checkerboard analysis demonstrated the remarkable synergism between AS101 and AZT, with the observable decrease in the MIC value for two agents and the fractional inhibitory concentration (FIC) index ≤0.5 in all strains. Hence, the combination of AS101 and azidothymidine could be a potential treatment option against CRKP for drug development.
Collapse
|
6
|
Souza JPA, Menezes LRA, Garcia FP, Scariot DB, Bandeira PT, Bespalhok MB, Giese SOK, Hughes DL, Nakamura CV, Barison A, Oliveira ARM, Campos RB, Piovan L. Synthesis, Mechanism Elucidation and Biological Insights of Tellurium(IV)-Containing Heterocycles. Chemistry 2021; 27:14427-14437. [PMID: 34406689 DOI: 10.1002/chem.202102287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Indexed: 11/08/2022]
Abstract
Inspired by the synthetic and biological potential of organotellurium substances, a series of five- and six-membered ring organotelluranes containing a Te-O bond were synthesized and characterized. Theoretical calculations elucidated the mechanism for the oxidation-cyclization processes involved in the formation of the heterocycles, consistent with chlorine transfer to hydroxy telluride, followed by a cyclization step with simultaneous formation of the new Te-O bond and deprotonation of the OH group. Moreover, theoretical calculations also indicated anti-diastereoisomers to be major products for two chirality center-containing compounds. Antileishmanial assays against Leishmania amazonensis promastigotes disclosed 1,2λ4 -oxatellurane LQ50 (IC50 =4.1±1.0; SI=12), 1,2λ4 -oxatellurolane LQ04 (IC50 =7.0±1.3; SI=7) and 1,2λ4 -benzoxatellurole LQ56 (IC50 =5.7±0.3; SI=6) as more powerful and more selective compounds than the reference, being up to four times more active. A stability study supported by 125 Te NMR analyses showed that these heterocycles do not suffer structural modifications in aqueous-organic media or at temperatures up to 65 °C.
Collapse
Affiliation(s)
- João Pedro A Souza
- Department of Chemistry, Universidade Federal do Paraná, Curitiba, PR, 81.931-480, Brazil
| | - Leociley R A Menezes
- Department of Chemistry, Universidade Federal do Paraná, Curitiba, PR, 81.931-480, Brazil
| | - Francielle P Garcia
- Health Sciences Center, Universidade Estadual de Maringá, Maringá, PR, 87.020-900, Brazil
| | - Débora B Scariot
- Health Sciences Center, Universidade Estadual de Maringá, Maringá, PR, 87.020-900, Brazil
| | - Pamela T Bandeira
- Department of Chemistry, Universidade Federal do Paraná, Curitiba, PR, 81.931-480, Brazil
| | - Mateus B Bespalhok
- Department of Chemistry, Universidade Federal do Paraná, Curitiba, PR, 81.931-480, Brazil
| | - Siddhartha O K Giese
- Department of Chemistry, Universidade Federal do Paraná, Curitiba, PR, 81.931-480, Brazil
| | - David L Hughes
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Celso V Nakamura
- Health Sciences Center, Universidade Estadual de Maringá, Maringá, PR, 87.020-900, Brazil
| | - Andersson Barison
- Department of Chemistry, Universidade Federal do Paraná, Curitiba, PR, 81.931-480, Brazil
| | - Alfredo R M Oliveira
- Department of Chemistry, Universidade Federal do Paraná, Curitiba, PR, 81.931-480, Brazil
| | - Renan B Campos
- Academic Department of Chemistry and Biology, Universidade Tecnológica Federal do Paraná, Curitiba, PR, 81.280-340, Brazil
| | - Leandro Piovan
- Department of Chemistry, Universidade Federal do Paraná, Curitiba, PR, 81.931-480, Brazil
| |
Collapse
|
7
|
Yang TY, Tseng SP, Dlamini HN, Lu PL, Lin L, Wang LC, Hung WC. In Vitro and In Vivo Activity of AS101 against Carbapenem-Resistant Acinetobacter baumannii. Pharmaceuticals (Basel) 2021; 14:ph14080823. [PMID: 34451920 PMCID: PMC8399104 DOI: 10.3390/ph14080823] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 01/02/2023] Open
Abstract
The increasing trend of carbapenem-resistant Acinetobacter baumannii (CRAB) worldwide has become a concern, limiting therapeutic alternatives and increasing morbidity and mortality rates. The immunomodulation agent ammonium trichloro (dioxoethylene-O,O′-) tellurate (AS101) was repurposed as an antimicrobial agent against CRAB. Between 2016 and 2018, 27 CRAB clinical isolates were collected in Taiwan. The in vitro antibacterial activities of AS101 were evaluated using broth microdilution, time-kill assay, reactive oxygen species (ROS) detection and electron microscopy. In vivo effectiveness was assessed using a sepsis mouse infection model. The MIC range of AS101 for 27 CRAB isolates was from 0.5 to 32 µg/mL, which is below its 50% cytotoxicity (approximately 150 µg/mL). Bactericidal activity was confirmed using a time-kill assay. The antibacterial mechanism of AS101 was the accumulation of the ROS and the disruption of the cell membrane, which, in turn, results in cell death. The carbapenemase-producing A. baumannii mouse sepsis model showed that AS101 was a better therapeutic effect than colistin. The mice survival rate after 120 h was 33% (4/12) in the colistin-treated group and 58% (7/12) in the high-dose AS101 (3.33 mg/kg/day) group. Furthermore, high-dose AS101 significantly decreased bacterial population in the liver, kidney and spleen (all p < 0.001). These findings support the concept that AS101 is an ideal candidate for further testing in future studies.
Collapse
Affiliation(s)
- Tsung-Ying Yang
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (T.-Y.Y.); (S.-P.T.); (H.N.D.)
| | - Sung-Pin Tseng
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (T.-Y.Y.); (S.-P.T.); (H.N.D.)
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Heather Nokulunga Dlamini
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (T.-Y.Y.); (S.-P.T.); (H.N.D.)
| | - Po-Liang Lu
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Internal Medicine, Division of Infectious Diseases, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Lin Lin
- Department of Culinary Art, I-Shou University, Kaohsiung 84001, Taiwan;
| | - Liang-Chun Wang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Wei-Chun Hung
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7-312-1101 (ext. 2150-16)
| |
Collapse
|
8
|
Yang TY, Kao HY, Lu PL, Chen PY, Wang SC, Wang LC, Hsieh YJ, Tseng SP. Evaluation of the Organotellurium Compound AS101 for Treating Colistin- and Carbapenem-Resistant Klebsiella pneumoniae. Pharmaceuticals (Basel) 2021; 14:ph14080795. [PMID: 34451891 PMCID: PMC8400984 DOI: 10.3390/ph14080795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/01/2021] [Accepted: 08/09/2021] [Indexed: 01/21/2023] Open
Abstract
Colistin- and carbapenem-resistant Enterobacteriaceae cases are increasing at alarming rates worldwide. Drug repurposing is receiving greater attention as an alternative approach in light of economic and technical barriers in antibiotics research. The immunomodulation agent ammonium trichloro(dioxoethylene-O,O’-)tellurate (AS101) was repurposed as an antimicrobial agent against colistin- and carbapenem-resistant Klebsiella pneumoniae (CRKP). 134 CRKP isolates were collected between 2012 and 2015 in Taiwan. The in vitro antibacterial activities of AS101 was observed through broth microdilution, time-kill assay, and electron microscopy. Pharmaceutical manipulation and RNA microarray were applied to investigate these antimicrobial mechanisms. Caenorhabditis elegans, a nematode animal model, and the Institute for Cancer Research (ICR) mouse model was employed for the evaluation of in vivo efficacy. The in vitro antibacterial results were found for AS101 against colistin- and CRKP isolates, with minimum inhibitory concentration (MIC) values ranging from <0.5 to 32 μg/mL. ROS-mediated antibacterial activity eliminated 99.9% of bacteria within 2–4 h. AS101 also extended the median survival time in a C. elegans animal model infected with a colistin-resistant CRKP isolate and rescued lethally infected animals in a separate mouse model of mono-bacterial sepsis by eliminating bacterial organ loads. These findings support the use of AS101 as an antimicrobial agent for addressing the colistin and carbapenem resistance crisis.
Collapse
Affiliation(s)
- Tsung-Ying Yang
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (T.-Y.Y.); (P.-Y.C.); (S.-C.W.)
| | - Hao-Yun Kao
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Po-Liang Lu
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Pei-Yu Chen
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (T.-Y.Y.); (P.-Y.C.); (S.-C.W.)
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (T.-Y.Y.); (P.-Y.C.); (S.-C.W.)
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Liang-Chun Wang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Ya-Ju Hsieh
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Correspondence: (Y.-J.H.); (S.-P.T.); Tel.: +886-7-312-1101 (ext. 2350) (Y.-J.H.); +886-7-312-1101 (ext. 2356-22) (S.-P.T.)
| | - Sung-Pin Tseng
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (T.-Y.Y.); (P.-Y.C.); (S.-C.W.)
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 900391, Taiwan
- Correspondence: (Y.-J.H.); (S.-P.T.); Tel.: +886-7-312-1101 (ext. 2350) (Y.-J.H.); +886-7-312-1101 (ext. 2356-22) (S.-P.T.)
| |
Collapse
|
9
|
Teixeira ML, Menezes LRA, Barison A, de Oliveira ARM, Piovan L. Investigation of Chemical Stability of Dihalogenated Organotelluranes in Organic-Aqueous Media: The Protagonism of Water. J Org Chem 2018; 83:7341-7346. [PMID: 29373033 DOI: 10.1021/acs.joc.7b02971] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The biological activity of tellurium compounds is closely related to the tellurium oxidation state or some of their structural features. Hypervalent dihalogenated organotelluranes 1-[butyl(dichloro)-λ4-tellanyl]-2-(methoxymethyl)benzene (1a) and 1-[butyl(dibromide)-λ4-tellanyl]-2-(methoxymethyl)benzene (1b) have been described as inhibitors of proteases (cysteine and threonine) and tyrosine phosphatases. However, poor attention has been given to their physicochemical properties. Here, a detailed investigation of the stability in water of these organotelluranes is reported using 125Te NMR analysis. Dihalogenated organotelluranes 1a and 1b were both stable in DMSO- d6 (from 25 to 75 °C), demonstrating their thermal stability. However, the addition of a phosphate buffer solution (pH 2-8) to 1a or 1b resulted in an immediate conversion to a new Te species, assumed to be the corresponding telluroxide. Similar behavior was observed in pure water, demonstrating the low chemical stability of these dihalogenated species in the presence of water. These results allow concluding that previous biological activity reported for dihalogenated organotelluranes 1a and 1b could be attributed to the corresponding derivatives from the reaction with water. In the same way as for AS-101, we demonstrated that organotelluranes 1a and 1b are not stable in aqueous solution. It suggests a proactive role of these organotelluranes in previously reported biological activity.
Collapse
Affiliation(s)
- Mariana L Teixeira
- Department of Chemistry , Universidade Federal do Paraná , Avenida Coronel Francisco Heráclito dos Santos, 100 - Jardim das Américas , Curitiba , Paraná 81531980 , Brazil
| | - Leociley R A Menezes
- Department of Chemistry , Universidade Federal do Paraná , Avenida Coronel Francisco Heráclito dos Santos, 100 - Jardim das Américas , Curitiba , Paraná 81531980 , Brazil
| | - Andersson Barison
- Department of Chemistry , Universidade Federal do Paraná , Avenida Coronel Francisco Heráclito dos Santos, 100 - Jardim das Américas , Curitiba , Paraná 81531980 , Brazil
| | - Alfredo R M de Oliveira
- Department of Chemistry , Universidade Federal do Paraná , Avenida Coronel Francisco Heráclito dos Santos, 100 - Jardim das Américas , Curitiba , Paraná 81531980 , Brazil
| | - Leandro Piovan
- Department of Chemistry , Universidade Federal do Paraná , Avenida Coronel Francisco Heráclito dos Santos, 100 - Jardim das Américas , Curitiba , Paraná 81531980 , Brazil
| |
Collapse
|
10
|
Matharu RK, Charani Z, Ciric L, Illangakoon UE, Edirisinghe M. Antimicrobial activity of tellurium-loaded polymeric fiber meshes. J Appl Polym Sci 2018. [DOI: 10.1002/app.46368] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Rupy Kaur Matharu
- Department of Mechanical Engineering; University College London; London WC1E 7JE United Kingdom
- Department of Civil, Environmental and Geomatic Engineering; University College London; London WC1E 7JE United Kingdom
| | - Zhalan Charani
- Department of Mechanical Engineering; University College London; London WC1E 7JE United Kingdom
| | - Lena Ciric
- Department of Civil, Environmental and Geomatic Engineering; University College London; London WC1E 7JE United Kingdom
| | | | - Mohan Edirisinghe
- Department of Mechanical Engineering; University College London; London WC1E 7JE United Kingdom
| |
Collapse
|
11
|
Sheinboim D, Hindiyeh M, Mendelson E, Albeck M, Sredni B, Dovrat S. The immunomodulator, ammonium trichloro[1,2-ethanediolato-O,O']-tellurate, suppresses the propagation of herpes simplex virus 2 by reducing the infectivity of the virus progeny. Int J Mol Med 2015; 36:231-8. [PMID: 25936393 DOI: 10.3892/ijmm.2015.2197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/17/2015] [Indexed: 11/05/2022] Open
Abstract
Persistent investigations for the identification of novel anti-herpetic drugs are being conducted worldwide, as current treatment options are sometimes insufficient. The immunomodulator, ammonium trichloro[1,2‑ethanediolato‑O,O']‑tellurate (AS101), a non‑toxic tellurium (Ⅳ) compound, has been shown to exhibit anti‑viral activity against a variety of viruses in cell cultures and in animal models. In the present study, the anti‑viral activity of AS101 against herpes simplex virus (HSV)‑1 and 2 was investigated in vitro. The results demonstrated that AS101 significantly restricted HSV‑2-induced plaque formation and reduced the infectivity of the HSV‑2 yield, while HSV‑1 was affected to a lesser extent. The incubation of mature HSV‑1 and HSV‑2 viruses with AS101 had no effect on viral infectivity, indicating that the compound interrupts de novo viral synthesis. The addition of AS101 at up to 9 h post‑infection had almost the same effect as did the addition of the drug together with the virus (it maintained 80% of its total anti‑viral capacity). Quantitative PCR and immunofluoresence staining of viral structural proteins revealed that the viral DNA and protein synthesis stages were not interrupted by the administration of AS101. By contrast, in the presence of the compound, significantly fewer viable viruses (≥2 log reduction) were recovered from the AS10‑treated cell cultures. Of note, when we determined the viability of the intracellular virus, formed in the presence of the compound, a less severe (≤1 log) effect was observed. Taken together, these data strongly suggest that AS101 primarily interferes with late stages of viral replication, such as viral particle envelopment or egress, leading to the production of a defective virus progeny.
Collapse
Affiliation(s)
- D Sheinboim
- Central Virology Laboratory, The Chaim Sheba Medical Center, Ramat‑Gan, Israel
| | - M Hindiyeh
- Central Virology Laboratory, The Chaim Sheba Medical Center, Ramat‑Gan, Israel
| | - E Mendelson
- Central Virology Laboratory, The Chaim Sheba Medical Center, Ramat‑Gan, Israel
| | - M Albeck
- Department of Chemistry, Faculty of Exact Sciences, Bar‑Ilan University, Ramat‑Gan, Israel
| | - B Sredni
- The SAFDIÉ Cancer, AIDS and Immunology Research (CAIR) Institute, The Mina and Everard Goodman Faculty of Life Sciences, Bar‑Ilan University, Ramat‑Gan, Israel
| | - S Dovrat
- Central Virology Laboratory, The Chaim Sheba Medical Center, Ramat‑Gan, Israel
| |
Collapse
|
12
|
Vázquez-Tato MP, Mena-Menéndez A, Feás X, Seijas JA. Novel microwave-assisted synthesis of the immunomodulator organotellurium compound ammonium trichloro(dioxoethylene-O,O')tellurate (AS101). Int J Mol Sci 2014; 15:3287-98. [PMID: 24566150 PMCID: PMC3958912 DOI: 10.3390/ijms15023287] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/11/2014] [Accepted: 02/17/2014] [Indexed: 12/17/2022] Open
Abstract
Ammonium trichloro[1,2-ethanediolato-O,O′]-tellurate (AS101) is the most important synthetic Te compound from the standpoint of its biological activity. It is a potent immunomodulator with a variety of potential therapeutic applications and antitumoral action in several preclinical and clinical studies. An experimental design has been used to develop and optimize a novel microwave-assisted synthesis (MAOS) of the AS101. In comparison to the results observed in the literature, refluxing Te(IV) chloride and ethylene glycol in acetonitrile (Method A), or by refluxing Te(IV) chloride and ammonium chloride in ethylene glycol (Method B), it was found that the developed methods in the present work are an effective alternative, because although performance slightly decreases compared to conventional procedures (75% vs. 79% by Method A, and 45% vs. 51% by Method B), reaction times decreased from 4 h to 30 min and from 4 h to 10 min, by Methods A and B respectively. MAOS is proving to be of value in the rapid synthesis of compounds with new and improved biological activities, specially based on the benefit of its shorter reaction times.
Collapse
Affiliation(s)
- M Pilar Vázquez-Tato
- Department of Organic Chemistry, Faculty of Science, University of Santiago de Compostela, E-27002 Lugo, Spain.
| | - Alberto Mena-Menéndez
- Department of Organic Chemistry, Faculty of Science, University of Santiago de Compostela, E-27002 Lugo, Spain.
| | - Xesús Feás
- Department of Organic Chemistry, Faculty of Science, University of Santiago de Compostela, E-27002 Lugo, Spain.
| | - Julio A Seijas
- Department of Organic Chemistry, Faculty of Science, University of Santiago de Compostela, E-27002 Lugo, Spain.
| |
Collapse
|
13
|
Antibacterial effects of the tellurium compound OTD on E. coli isolates. Arch Microbiol 2013; 196:51-61. [PMID: 24322541 DOI: 10.1007/s00203-013-0941-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/21/2013] [Accepted: 11/05/2013] [Indexed: 11/27/2022]
Abstract
The antibacterial effects of a new organo-tellurium compound [Octa-O-bis-(R,R)-tartarate ditellurane (OTD)] on Escherichia coli isolates as a model are shown. OTD was found to be a bactericidal drug. It exhibits inhibition zones on a protein-rich agar medium but not in a protein-poor medium unless a thiol is added. When applied at the lag phase, OTD inhibits more efficiently than at the log phase. Thiols enhance the efficiency at the log phase. OTD inhibits biofilm formation of E. coli. X-ray microanalysis demonstrated damage caused to the Na⁺/K⁺ pumps and leakage of potassium and phosphorous. Scanning electron microscopy demonstrated an incomplete surface of the bacterial cell wall with a concavity in the center that looks like a hole. Transmission electron microscopy demonstrated severe damage, such as depletion, perforation, and holes in the inner membrane. These results indicate for the first time that the new tellurium compound has antibacterial activities.
Collapse
|
14
|
Daniel-Hoffmann M, Sredni B, Nitzan Y. Bactericidal activity of the organo-tellurium compound AS101 against Enterobacter cloacae. J Antimicrob Chemother 2012; 67:2165-72. [DOI: 10.1093/jac/dks185] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
15
|
Piovan L, Alves MF, Juliano L, Brömme D, Cunha RL, Andrade LH. Structure–activity relationships of hypervalent organochalcogenanes as inhibitors of cysteine cathepsins V and S. Bioorg Med Chem 2011; 19:2009-14. [DOI: 10.1016/j.bmc.2011.01.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 01/22/2011] [Accepted: 01/25/2011] [Indexed: 11/16/2022]
|