1
|
Skoog EJ, Fournier GP, Bosak T. Assessing the Influence of HGT on the Evolution of Stress Responses in Microbial Communities from Shark Bay, Western Australia. Genes (Basel) 2023; 14:2168. [PMID: 38136990 PMCID: PMC10742547 DOI: 10.3390/genes14122168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Pustular microbial mats in Shark Bay, Western Australia, are modern analogs of microbial systems that colonized peritidal environments before the evolution of complex life. To understand how these microbial communities evolved to grow and metabolize in the presence of various environmental stresses, the horizontal gene transfer (HGT) detection tool, MetaCHIP, was used to identify the horizontal transfer of genes related to stress response in 83 metagenome-assembled genomes from a Shark Bay pustular mat. Subsequently, maximum-likelihood phylogenies were constructed using these genes and their most closely related homologs from other environments in order to determine the likelihood of these HGT events occurring within the pustular mat. Phylogenies of several stress-related genes-including those involved in response to osmotic stress, oxidative stress and arsenic toxicity-indicate a potentially long history of HGT events and are consistent with these transfers occurring outside of modern pustular mats. The phylogeny of a particular osmoprotectant transport gene reveals relatively recent adaptations and suggests interactions between Planctomycetota and Myxococcota within these pustular mats. Overall, HGT phylogenies support a potentially broad distribution in the relative timing of the HGT events of stress-related genes and demonstrate ongoing microbial adaptations and evolution in these pustular mat communities.
Collapse
Affiliation(s)
- Emilie J. Skoog
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (G.P.F.); (T.B.)
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA
| | - Gregory P. Fournier
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (G.P.F.); (T.B.)
| | - Tanja Bosak
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (G.P.F.); (T.B.)
| |
Collapse
|
2
|
Su C, Deng Q, Chen Z, Lu X, Huang Z, Guan X, Chen M. Denitrifying anaerobic methane oxidation process responses to the addition of growth factor betaine in the MFC-granular sludge coupling system: Enhancing mechanism and metagenomic analysis. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126139. [PMID: 34492928 DOI: 10.1016/j.jhazmat.2021.126139] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/27/2021] [Accepted: 05/13/2021] [Indexed: 06/13/2023]
Abstract
To solve the problem of the slow growth of denitrifying anaerobic methane oxidation (DAMO) bacteria during the enrichment process, betaine was added as a growth factor and its influence on the mechanism of DAMO process along with the metagenomic analysis of the process in a MFC-granular sludge coupling system was explored. When the addition of betaine was increased to 0.5 g/L and 1.0 g/L, the NO3--N removal increased to 210 mg/L. Also, the increasing betaine dosage in 1st to 4th chambers resulted in a significant increase in dissolved methane concentration which reached a maximum value of 16.6 ± 1.19 mg/L. When the dosage of betaine was increased from 0 g/L to 1.0 g/L, the dominant bacterial phyla in the 1st to 4th chambers changed to Proteobacteria (20.8-50.7%) from Euryarchaeota (42.0-54.1%) and Methanothrix which was significantly decreased by 17.9-37.4%. There was a slight decline in the DAMO microorganism abundance, possibly due to the increased methyl donors limiting the DAMO microorganism growth. Denitrification metabolism pathway module (increased from 0.10% to 0.15%) of Nitrogen metabolism and Formaldehyde assimilation, and serine pathway of Methane metabolism presented an ascendant trend with the increased betaine dosage as determined by the metagenomics analysis of KEGG metabolism pathway.
Collapse
Affiliation(s)
- Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined with Science and Technology Innovation Base, 12 Jiangan Road, Guilin 541004, PR China; University Key Laboratory of Karst Ecology and Environmental Change of Guangxi Province (Guangxi Normal University), 15 Yucai Road, Guilin 541004, PR China.
| | - Qiujin Deng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Zhengpeng Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Xinya Lu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Zun Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Xin Guan
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Menglin Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| |
Collapse
|
3
|
Lewis CA, Wolfenden R. The Burden Borne by Protein Methyltransferases: Rates and Equilibria of Non-enzymatic Methylation of Amino Acid Side Chains by SAM in Water. Biochemistry 2021; 60:854-858. [PMID: 33667085 DOI: 10.1021/acs.biochem.1c00028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
SAM is a powerful methylating agent, with a methyl group transfer potential matching the phosphoryl group transfer potential of ATP. SAM-dependent N-methyltransferases have evolved to catalyze the modification of specific lysine residues in histones and transcription factors, in addition to generating epinephrine, N-methylnicotinamide, and a quaternary amine (betaine) that is used to maintain osmotic pressure in plants and halophilic bacteria. To assess the catalytic power of these enzymes and their potential susceptibility to transition state and multisubstrate analogue inhibitors, we determined the rates and positions of the equilibrium of methyl transfer from the trimethylsulfonium ion to model amines in the absence of a catalyst. Unlike the methyl group transfer potential of SAM, which becomes more negative with an increase in pH throughout the normal pH range, equilibrium constants for the hydrolytic demethylation of secondary, tertiary, and quaternary amines are found to be insensitive to a change in pH and resemble each other in magnitude, with an average ΔG value of approximately -0.7 kcal/mol at pH 7. Thus, each of the three steps in the mono-, di-, and trimethylation of lysine by SAM is accompanied by a change in free energy of -7.5 kcal/mol in a neutral solution. Arrhenius analysis of the uncatalyzed reactions shows that the unprotonated form of glycine attacks the trimethylsulfonium ion (TMS+) with second-order rates constant of 1.8 × 10-7 M-1 s-1 at 25 °C (ΔH⧧ = 22 kcal/mol, and TΔS⧧ = -6 kcal/mol). Comparable values are observed for the methylation of secondary and tertiary amines, with k25 values of 1.1 × 10-7 M-1 s-1 for sarcosine and 4.3 × 10-8 M-1 s-1 for dimethylglycine. The non-enzymatic methylations of imidazole and methionine by TMS+, benchmarks for the methylation of histidine and methionine residues by SETD3, exhibit k25 values of 3.3 × 10-9 and 1.2 × 10-9 M-1 s-1, respectively. Lysine methylation by SAM, although slow under physiological conditions (t1/2 = 7 weeks at 25 °C), is accelerated 1.1 × 1012 -fold at the active site of a SET domain methyltransferase.
Collapse
Affiliation(s)
- Charles A Lewis
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina 27514, United States
| | - Richard Wolfenden
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina 27514, United States
| |
Collapse
|
4
|
Guan Y, Ngugi DK, Vinu M, Blom J, Alam I, Guillot S, Ferry JG, Stingl U. Comparative Genomics of the Genus Methanohalophilus, Including a Newly Isolated Strain From Kebrit Deep in the Red Sea. Front Microbiol 2019; 10:839. [PMID: 31068917 PMCID: PMC6491703 DOI: 10.3389/fmicb.2019.00839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/02/2019] [Indexed: 01/25/2023] Open
Abstract
Halophilic methanogens play an important role in the carbon cycle in hypersaline environments, but are under-represented in culture collections. In this study, we describe a novel Methanohalophilus strain that was isolated from the sulfide-rich brine-seawater interface of Kebrit Deep in the Red Sea. Based on physiological and phylogenomic features, strain RSK, which is the first methanogenic archaeon to be isolated from a deep hypersaline anoxic brine lake of the Red Sea, represents a novel species of this genus. In order to compare the genetic traits underpinning the adaptations of this genus in diverse hypersaline environments, we sequenced the genome of strain RSK and compared it with genomes of previously isolated and well characterized species in this genus (Methanohalophilus mahii, Methanohalophilus halophilus, Methanohalophilus portucalensis, and Methanohalophilus euhalobius). These analyses revealed a highly conserved genomic core of greater than 93% of annotated genes (1490 genes) containing pathways for methylotrophic methanogenesis, osmoprotection through salt-out strategy, and oxidative stress response, among others. Despite the high degree of genomic conservation, species-specific differences in sulfur and glycogen metabolisms, viral resistance, amino acid, and peptide uptake machineries were also evident. Thus, while Methanohalophilus species are found in diverse extreme environments, each genotype also possesses adaptive traits that are likely relevant in their respective hypersaline habitats.
Collapse
Affiliation(s)
- Yue Guan
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - David K. Ngugi
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Manikandan Vinu
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jochen Blom
- Bioinformatik und Systembiologie, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Intikhab Alam
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Sylvain Guillot
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - James G. Ferry
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Ulrich Stingl
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Department of Microbiology and Cell Science, UF/IFAS Fort Lauderdale Research and Education Center, University of Florida, Davie, FL, United States
| |
Collapse
|
5
|
Hyslop JF, Lovelock SL, Watson AJB, Sutton PW, Roiban GD. N-Alkyl-α-amino acids in Nature and their biocatalytic preparation. J Biotechnol 2019; 293:56-65. [PMID: 30690098 DOI: 10.1016/j.jbiotec.2019.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/18/2018] [Accepted: 01/03/2019] [Indexed: 11/16/2022]
Abstract
N-Alkylated-α-amino acids are useful building blocks for the pharmaceutical and fine chemical industries. Enantioselective methods of N-alkylated-α-amino acid synthesis are therefore highly valuable and widely investigated. While there are a variety of chemical methods for their synthesis, they often employ stoichiometric quantities of hazardous reagents such as pyrophoric metal hydrides or genotoxic alkylating agents, whereas biocatalytic routes can provide a greener and cleaner alternative to existing methods. This review highlights the occurrence of the N-alkyl-α-amino acid motif and its role in nature, important applications towards human health and biocatalytic methods of preparation. Several enzyme classes that can be used to access chiral N-alkylated-α-amino acids and their substrate selectivities are detailed.
Collapse
Affiliation(s)
- Julia F Hyslop
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK; Advanced Manufacturing Technologies, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Sarah L Lovelock
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Allan J B Watson
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - Peter W Sutton
- Department of Chemical, Biological and Environmental Engineering, Group of Bioprocess Engineering and Applied Biocatalysis, Universitat Autònoma de Barcelona, 08193, Bellaterra, (Cerdanyola del Vallès), Catalunya, Spain.
| | - Gheorghe-Doru Roiban
- Advanced Manufacturing Technologies, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK.
| |
Collapse
|
6
|
Sun L, Sun J, Xu Q, Li X, Zhang L, Yang H. Metabolic responses to intestine regeneration in sea cucumbers Apostichopus japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 22:32-38. [PMID: 28189056 DOI: 10.1016/j.cbd.2017.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/27/2017] [Accepted: 02/02/2017] [Indexed: 02/08/2023]
Abstract
Sea cucumbers are excellent models for studying organ regeneration due to their striking capacity to regenerate most of their viscera after evisceration. In this study, we applied NMR-based metabolomics to determine the metabolite changes that occur during the process of intestine regeneration in sea cucumbers. Partial least-squares discriminant analysis showed that there was significant differences in metabolism between regenerative intestines at 3, 7, and 14days post evisceration (dpe) and normal intestines. Changes in the concentration of 13 metabolites related to regeneration were observed and analyzed. These metabolites included leucine, isoleucine, valine, arginine, glutamate, hypotaurine, dimethylamine, N,N-dimethylglycine, betaine, taurine, inosine, homarine, and histidine. Three important genes (betaine-aldehyde dehydrogenase, betaine-homocysteine S-methyltransferase 1, and dimethylglycine dehydrogenase) were differentially expressed to regulate the levels of betaine and N,N-dimethylglycine during intestine regeneration. These results provide an important basis for studying regenerative mechanisms and developing regenerative matrixes.
Collapse
Affiliation(s)
- Lina Sun
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Jingchun Sun
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Qinzeng Xu
- Key Laboratory of Marine Ecology and Environmental Science and Engineering, First Institute of Oceanography, State Oceanic Administration, Qingdao, China
| | - Xiaoni Li
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Libin Zhang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| | - Hongsheng Yang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
7
|
Lai SJ, Deng YC, Lai MC. Comparison of Enzymatic Traits between Native and Recombinant Glycine Sarcosine N-Methyltransferase from Methanohalophilus portucalensis FDF1T. PLoS One 2016; 11:e0168666. [PMID: 28036340 PMCID: PMC5201303 DOI: 10.1371/journal.pone.0168666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 12/05/2016] [Indexed: 11/18/2022] Open
Abstract
The halophilic methanoarchaeon Methanohalophilus portucalensis FDF1T possesses the ability to synthesize the osmolyte betaine from its precursor, glycine, in response to extracellular salt stress through a three-step transmethylation process. Analysis of recombinant glycine sarcosine N-methyltransferase (rGSMT) and recombinant sarcosine dimethylglycine N-methyltransferase (rSDMT) from Escherichia coli indicated that betaine synthesis is rate-limited by rGSMT and is constitutively activated by rSDMT. Therefore, it is of interest to purify native GSMT from Methanohalophilus portucalensis to further compare its enzymatic characteristics and kinetics with rGSMT. In this study, native GSMT was purified through DEAE ion exchange and gel filtration chromatography with 95% purity. The enzymatic characteristics of GSMT and rGSMT showed similar trends of activities that were activated by high concentrations of monovalent cations. Both were feedback-inhibited by the end product, betaine, and competitively inhibited by S-adenosylhomocysteine (SAH). Native GSMT was 2-fold more sensitive to SAH than rGSMT. Notably, comparison of the kinetic parameters illustrated that the turnover rate of glycine methylation of GSMT was promoted by potassium ions, whereas rGSMT was activated by increasing protein-glycine binding affinity. These results suggest that GSMT and rGSMT may have different levels of post-translational modifications. Our preliminary mass spectrometry evidence indicated that there was no detectable phosphosite on GSMT after the complicated purification processes, whereas purified rGSMT still possessed 23.1% of its initial phosphorylation level. We believe that a phosphorylation-mediated modification may be involved in the regulation of this energy consuming betaine synthesis pathway during the stress response in halophilic methanoarchaea.
Collapse
Affiliation(s)
- Shu-Jung Lai
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Institute of Biological Chemistry, Academia Sinica. Taipei, Taiwan
| | - Yu-Chen Deng
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Mei-Chin Lai
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
8
|
Wu WL, Lai SJ, Yang JT, Chern J, Liang SY, Chou CC, Kuo CH, Lai MC, Wu SH. Phosphoproteomic analysis of Methanohalophilus portucalensis FDF1(T) identified the role of protein phosphorylation in methanogenesis and osmoregulation. Sci Rep 2016; 6:29013. [PMID: 27357474 PMCID: PMC4928046 DOI: 10.1038/srep29013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/10/2016] [Indexed: 02/02/2023] Open
Abstract
Methanogens have gained much attention for their metabolic product, methane, which could be an energy substitute but also contributes to the greenhouse effect. One factor that controls methane emission, reversible protein phosphorylation, is a crucial signaling switch, and phosphoproteomics has become a powerful tool for large-scale surveying. Here, we conducted the first phosphorylation-mediated regulation study in halophilic Methanohalophilus portucalensis FDF1(T), a model strain for studying stress response mechanisms in osmoadaptation. A shotgun approach and MS-based analysis identified 149 unique phosphoproteins. Among them, 26% participated in methanogenesis and osmolytes biosynthesis pathways. Of note, we uncovered that protein phosphorylation might be a crucial factor to modulate the pyrrolysine (Pyl) incorporation and Pyl-mediated methylotrophic methanogenesis. Furthermore, heterologous expression of glycine sarcosine N-methyltransferase (GSMT) mutant derivatives in the osmosensitive Escherichia coli MKH13 revealed that the nonphosphorylated T68A mutant resulted in increased salt tolerance. In contrast, mimic phosphorylated mutant T68D proved defective in both enzymatic activity and salinity tolerance for growth. Our study provides new insights into phosphorylation modification as a crucial role of both methanogenesis and osmoadaptation in methanoarchaea, promoting biogas production or reducing future methane emission in response to global warming and climate change.
Collapse
Affiliation(s)
- Wan-Ling Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Shu-Jung Lai
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Jhih-Tian Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Ph.D program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 40227, Taiwan
| | - Jeffy Chern
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Suh-Yuen Liang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Core Facilities for Protein Structural Analysis, Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chi-Chi Chou
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Core Facilities for Protein Structural Analysis, Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Mei-Chin Lai
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
9
|
Zou H, Chen N, Shi M, Xian M, Song Y, Liu J. The metabolism and biotechnological application of betaine in microorganism. Appl Microbiol Biotechnol 2016; 100:3865-76. [PMID: 27005411 DOI: 10.1007/s00253-016-7462-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 11/29/2022]
Abstract
Glycine betaine (betaine) is widely distributed in nature and can be found in many microorganisms, including bacteria, archaea, and fungi. Due to its particular functions, many microorganisms utilize betaine as a functional chemical and have evolved different metabolic pathways for the biosynthesis and catabolism of betaine. As in animals and plants, the principle role of betaine is to protect microbial cells against drought, osmotic stress, and temperature stress. In addition, the role of betaine in methyl group metabolism has been observed in a variety of microorganisms. Recent studies have shown that betaine supplementation can improve the performance of microbial strains used for the fermentation of lactate, ethanol, lysine, pyruvate, and vitamin B12, during which betaine can act as stress protectant or methyl donor for the biosynthesis of structurally complex compounds. In this review, we summarize the transport, synthesis, catabolism, and functions of betaine in microorganisms and discuss potential engineering strategies that employ betaine as a methyl donor for the biosynthesis of complex secondary metabolites such as a variety of vitamins, coenzymes, and antibiotics. In conclusion, the biocompatibility, C/N ratio, abundance, and comprehensive metabolic information of betaine collectively indicate that this molecule has great potential for broad applications in microbial biotechnology.
Collapse
Affiliation(s)
- Huibin Zou
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China. .,CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.
| | - Ningning Chen
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Mengxun Shi
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Mo Xian
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Yimin Song
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Junhong Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
10
|
Lai SJ, Lai MC, Lee RJ, Chen YH, Yen HE. Transgenic Arabidopsis expressing osmolyte glycine betaine synthesizing enzymes from halophilic methanogen promote tolerance to drought and salt stress. PLANT MOLECULAR BIOLOGY 2014; 85:429-41. [PMID: 24803410 DOI: 10.1007/s11103-014-0195-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 04/17/2014] [Indexed: 05/24/2023]
Abstract
Glycine betaine (betaine) has the highest cellular osmoprotective efficiency which does not accumulate in most glycophytes. The biosynthetic pathway for betaine in higher plants is derived from the oxidation of low-accumulating metabolite choline that limiting the ability of most plants to produce betaine. Halophilic methanoarchaeon Methanohalophilus portucalensis FDF1(T) is a model anaerobic methanogen to study the acclimation of water-deficit stresses which de novo synthesize betaine by the stepwise methylation of glycine, catalyzed by glycine sarcosine N-methyltransferase (GSMT) and sarcosine dimethylglycine N-methyltransferase. In this report, genes encoding these betaine biosynthesizing enzymes, Mpgsmt and Mpsdmt, were introduced into Arabidopsis. The homozygous Mpgsmt (G), Mpsdmt (S), and their cross, Mpgsmt and Mpsdmt (G × S) plants showed increased accumulation of betaine. Water loss from detached leaves was slower in G, S, and G × S lines than wild-type (WT). Pot-grown transgenic plants showed better growth than WT after 9 days of withholding water or irrigating with 300 mM NaCl. G, S, G × S lines also maintained higher relative water content and photosystem II activity than WT under salt stress. This suggests heterologously expressed Mpgsmt and Mpsdmt could enhance tolerance to drought and salt stress in Arabidopsis. We also found a twofold increase in quaternary ammonium compounds in salt-stressed leaves of G lines, presumably due to the activation of GSMT activity by high salinity. This study demonstrates that introducing stress-activated enzymes is a way of avoiding the divergence of primary metabolites under normal growing conditions, while also providing protection in stressful environments.
Collapse
Affiliation(s)
- Shu-Jung Lai
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | | | | | | | | |
Collapse
|
11
|
Characterization and regulation of the osmolyte betaine synthesizing enzymes GSMT and SDMT from halophilic methanogen Methanohalophilus portucalensis. PLoS One 2011; 6:e25090. [PMID: 21949863 PMCID: PMC3176816 DOI: 10.1371/journal.pone.0025090] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 08/26/2011] [Indexed: 11/20/2022] Open
Abstract
The halophilic methanoarchaeon Methanohalophilus portucalensis can synthesize the osmolyte betaine de novo in response to extracellular salt stress. Betaine is generated by the stepwise methylation of glycine to form sarcosine, N, N-dimethylglycine and betaine by using S-adenosyl-L-methionine (AdoMet) as the methyl donor. The complete gene cluster of Mpgsmt-sdmt was cloned from Southern hybridization and heterologous expressed in E. coli respectively. The recombinant MpGSMT and MpSDMT both retained their in vivo functional activities in E. coli BL21(DE3)RIL to synthesize and accumulate betaine and conferred elevated survival ability in betaine transport deficient mutant E. coli MKH13 under high salt stress. The dramatic activating effects of sodium and potassium ions on the in vitro methyltransferase activities of MpGSMT, but not MpSDMT or bacterial GSMT and SDMT, revealed that GSMT from halophilic methanoarchaeon possesses novel regulate mechanism in betaine biosynthesis pathway. The circular dichroism spectra showed the fluctuated peaks at 206 nm were detected in the MpGSMT under various concentrations of potassium or sodium ions. This fluctuated difference may cause by a change in the β-turn structure located at the conserved glycine- and sarcosine-binding residue Arg167 of MpGSMT. The analytical ultracentrifugation analysis indicated that the monomer MpGSMT switched to dimeric form increased from 7.6% to 70% with KCl concentration increased from 0 to 2.0 M. The level of potassium and sodium ions may modulate the substrate binding activity of MpGSMT through the conformational change. Additionally, MpGSMT showed a strong end product, betaine, inhibitory effect and was more sensitive to the inhibitor AdoHcy. The above results indicated that the first enzymatic step involved in synthesizing the osmolyte betaine in halophilic archaea, namely, GSMT, may also play a major role in coupling the salt-in and compatible solute (osmolyte) osmoadaptative strategies in halophilic methanogens for adapting to high salt environments.
Collapse
|