1
|
Archambault M, Rubin JE. Antimicrobial Resistance in Clostridium and Brachyspira spp. and Other Anaerobes. Microbiol Spectr 2020; 8:10.1128/microbiolspec.arba-0020-2017. [PMID: 31971162 PMCID: PMC10773235 DOI: 10.1128/microbiolspec.arba-0020-2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Indexed: 01/26/2023] Open
Abstract
This article describes the antimicrobial resistance to date of the most frequently encountered anaerobic bacterial pathogens of animals. The different sections show that antimicrobial resistance can vary depending on the antimicrobial, the anaerobe, and the resistance mechanism. The variability in antimicrobial resistance patterns is also associated with other factors such as geographic region and local antimicrobial usage. On occasion, the same resistance gene was observed in many anaerobes, whereas some were limited to certain anaerobes. This article focuses on antimicrobial resistance data of veterinary origin.
Collapse
Affiliation(s)
- Marie Archambault
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2, Canada
| | - Joseph E Rubin
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatchewan S7N 5B4, Canada
| |
Collapse
|
2
|
Effect of Trehalose and Trehalose Transport on the Tolerance of Clostridium perfringens to Environmental Stress in a Wild Type Strain and Its Fluoroquinolone-Resistant Mutant. Int J Microbiol 2017; 2016:4829716. [PMID: 28058047 PMCID: PMC5183799 DOI: 10.1155/2016/4829716] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/10/2016] [Indexed: 11/17/2022] Open
Abstract
Trehalose has been shown to protect bacterial cells from environmental stress. Its uptake and osmoprotective effect in Clostridium perfringens were investigated by comparing wild type C. perfringens ATCC 13124 with a fluoroquinolone- (gatifloxacin-) resistant mutant. In a chemically defined medium, trehalose and sucrose supported the growth of the wild type but not that of the mutant. Microarray data and qRT-PCR showed that putative genes for the phosphorylation and transport of sucrose and trehalose (via phosphoenolpyruvate-dependent phosphotransferase systems, PTS) and some regulatory genes were downregulated in the mutant. The wild type had greater tolerance than the mutant to salts and low pH; trehalose and sucrose further enhanced the osmotolerance of the wild type to NaCl. Expression of the trehalose-specific PTS was lower in the fluoroquinolone-resistant mutant. Protection of C. perfringens from environmental stress could therefore be correlated with the ability to take up trehalose.
Collapse
|
3
|
Park M, Deck J, Foley SL, Nayak R, Songer JG, Seibel JR, Khan SA, Rooney AP, Hecht DW, Rafii F. Diversity of Clostridium perfringens isolates from various sources and prevalence of conjugative plasmids. Anaerobe 2015; 38:25-35. [PMID: 26608548 DOI: 10.1016/j.anaerobe.2015.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/27/2015] [Accepted: 11/03/2015] [Indexed: 11/27/2022]
Abstract
Clostridium perfringens is an important pathogen, causing food poisoning and other mild to severe infections in humans and animals. Some strains of C. perfringens contain conjugative plasmids, which may carry antimicrobial resistance and toxin genes. We studied genomic and plasmid diversity of 145 C. perfringens type A strains isolated from soils, foods, chickens, clinical samples, and domestic animals (porcine, bovine and canine), from different geographic areas in the United States between 1994 and 2006, using multiple-locus variable-number tandem repeat analysis (MLVA) and/or pulsed-field gel electrophoresis (PFGE). MLVA detected the genetic diversity in a majority of the isolates. PFGE, using SmaI and KspI, confirmed the MLVA results but also detected differences among the strains that could not be differentiated by MLVA. All of the PFGE profiles of the strains were different, except for a few of the epidemiologically related strains, which were identical. The PFGE profiles of strains isolated from the same domestic animal species were clustered more closely with each other than with other strains. However, a variety of C. perfringens strains with distinct genetic backgrounds were found among the clinical isolates. Variation was also observed in the size and number of plasmids in the strains. Primers for the internal fragment of a conjugative tcpH gene of C. perfringens plasmid pCPF4969 amplified identical size fragments from a majority of strains tested; and this gene hybridized to the various-sized plasmids of these strains. The sequences of the PCR-amplified tcpH genes from 12 strains showed diversity among the tcpH genes. Regardless of the sources of the isolates, the genetic diversity of C. perfringens extended to the plasmids carrying conjugative genes.
Collapse
Affiliation(s)
- Miseon Park
- Division of Microbiology, National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA
| | - Joanna Deck
- Division of Microbiology, National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA
| | - Steven L Foley
- Division of Microbiology, National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA
| | - Rajesh Nayak
- Division of Microbiology, National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA
| | | | | | - Saeed A Khan
- Division of Microbiology, National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA
| | - Alejandro P Rooney
- Crop Protection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604, USA
| | - David W Hecht
- Division of Infectious Diseases, Loyola University Medical Center, Maywood, IL 60126, USA
| | - Fatemeh Rafii
- Division of Microbiology, National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA.
| |
Collapse
|
4
|
Global Phenotypic Characterization of Effects of Fluoroquinolone Resistance Selection on the Metabolic Activities and Drug Susceptibilities of Clostridium perfringens Strains. Int J Microbiol 2014; 2014:456979. [PMID: 25587280 PMCID: PMC4283427 DOI: 10.1155/2014/456979] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/07/2014] [Accepted: 11/10/2014] [Indexed: 12/29/2022] Open
Abstract
Fluoroquinolone resistance affects toxin production of Clostridium perfringens strains differently. To investigate the effect of fluoroquinolone resistance selection on global changes in metabolic activities and drug susceptibilities, four C. perfringens strains and their norfloxacin-, ciprofloxacin-, and gatifloxacin-resistant mutants were compared in nearly 2000 assays, using phenotype microarray plates. Variations among mutant strains resulting from resistance selection were observed in all aspects of metabolism. Carbon utilization, pH range, osmotic tolerance, and chemical sensitivity of resistant strains were affected differently in the resistant mutants depending on both the bacterial genotype and the fluoroquinolone to which the bacterium was resistant. The susceptibilities to gentamicin and erythromycin of all resistant mutants except one increased, but some resistant strains were less susceptible to amoxicillin, cefoxitin, ceftriaxone, chloramphenicol, and metronidazole than their wild types. Sensitivity to ethidium bromide decreased in some resistant mutants and increased in others. Microarray analysis of two gatifloxacin-resistant mutants showed changes in metabolic activities that were correlated with altered expression of various genes. Both the chemical structures of fluoroquinolones and the genomic makeup of the wild types influenced the changes found in resistant mutants, which may explain some inconsistent reports of the effects of therapeutic use of fluoroquinolones on clinical isolates of bacteria.
Collapse
|
5
|
Park M, Sutherland JB, Kim JN, Rafii F. Effect of Fluoroquinolone Resistance Selection on the Fitness of Three Strains of Clostridium perfringens. Microb Drug Resist 2013; 19:421-7. [DOI: 10.1089/mdr.2013.0056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Miseon Park
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - John B. Sutherland
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Jong Nam Kim
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Fatemeh Rafii
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| |
Collapse
|
6
|
Park S, Park M, Rafii F. Comparative transcription analysis and toxin production of two fluoroquinolone-resistant mutants of Clostridium perfringens. BMC Microbiol 2013; 13:50. [PMID: 23452396 PMCID: PMC3599539 DOI: 10.1186/1471-2180-13-50] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 02/18/2013] [Indexed: 11/10/2022] Open
Abstract
Background Fluoroquinolone use has been listed as a risk factor for the emergence of virulent clinical strains of some bacteria. The aim of our study was to evaluate the effect of fluoroquinolone (gatifloxacin) resistance selection on differential gene expression, including the toxin genes involved in virulence, in two fluoroquinolone-resistant strains of Clostridium perfringens by comparison with their wild-type isogenic strains. Results DNA microarray analyses were used to compare the gene transcription of two wild types, NCTR and ATCC 13124, with their gatifloxacin-resistant mutants, NCTRR and 13124R. Transcription of a variety of genes involved in bacterial metabolism was either higher or lower in the mutants than in the wild types. Some genes, including genes for toxins and regulatory genes, were upregulated in NCTRR and downregulated in 13124R. Transcription analysis by quantitative real-time PCR (qRT-PCR) confirmed the altered expression of many of the genes that were affected differently in the fluoroquinolone-resistant mutants and wild types. The levels of gene expression and enzyme production for the toxins phospholipase C, perfringolysin O, collagenase and clostripain had decreased in 13124R and increased in NCTRR in comparison with the wild types. After centrifugation, the cytotoxicity of the supernatants of NCTRR and 13224R cultures for mouse peritoneal macrophages confirmed the increased cytotoxicity of NCTRR and the decreased cytotoxicity of 13124R in comparison with the respective wild types. Fluoroquinolone resistance selection also affected cell shape and colony morphology in both strains. Conclusion Our results indicate that gatifloxacin resistance selection was associated with altered gene expression in two C. perfringens strains and that the effect was strain-specific. This study clearly demonstrates that bacterial exposure to fluoroquinolones may affect virulence (toxin production) in addition to drug resistance.
Collapse
Affiliation(s)
- Sunny Park
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | | | | |
Collapse
|
7
|
Morrison JM, Wright CM, John GH. Identification, Isolation and characterization of a novel azoreductase from Clostridium perfringens. Anaerobe 2011; 18:229-34. [PMID: 22182443 DOI: 10.1016/j.anaerobe.2011.12.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 12/04/2011] [Accepted: 12/07/2011] [Indexed: 12/01/2022]
Abstract
Azo dyes are used widely in the textile, pharmaceutical, cosmetic and food industries as colorants and are often sources of environmental pollution. There are many microorganisms that are able to reduce azo dyes by use of an azoreductase enzyme. It is through the reduction of the azo bonds of the dyes that carcinogenic metabolites are produced thereby a concern for human health. The field of research on azoreductases is growing, but there is very little information available on azoreductases from strict anaerobic bacteria. In this study, the azoreductase gene was identified in Clostridium perfringens, a pathogen that is commonly found in the human intestinal tract. C. perfringens shows high azoreductase activity, especially in the presence of the common dye Direct Blue 15. A gene that encodes for a flavoprotein was isolated and expressed in Escherichia coli, and further purified and tested for azoreductase activity. The azoreductase (known as AzoC) was characterized by enzymatic reaction assays using different dyes. AzoC activity was highest in the presence of two cofactors, NADH and FAD. A strong cofactor effect was shown with some dyes, as dye reduction occurred without the presence of the AzoC (cofactors alone). AzoC was shown to perform best at a pH of 9, at room temperature, and in an anaerobic environment. Enzyme kinetics studies suggested that the association between enzyme and substrate is strong. Our results show that AzoC from C. perfringens has azoreductase activity.
Collapse
Affiliation(s)
- Jessica M Morrison
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | |
Collapse
|
8
|
Corigliano MG, de Guzmán AMS, Stagnitta PV. Characterization of the plasmidic or chromosomal cpe gene and metabolic activities in Clostridium perfringens isolates from food in San Luis--Argentina. Cent Eur J Public Health 2011; 19:46-53. [PMID: 21526657 DOI: 10.21101/cejph.a3597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Food poisoning and non-food poisoning illnesses due to C. perfringens (by enterotoxin production) have been associated to chromosomal or plasmidic location of the cpe gene, respectively. Clostridial pathogenicity has been correlated to protease and azoreductase production. The aim of this work was: i) to assess the sanitary-hygienic quality of dehydrated soups (100 samples) consumed in San Luis - Argentina; ii) to verify the presence of C. perfringens in these food products using the "Most Probable Number" method (MPN) and plate-counting methods; iii) to characterise enterotoxigenicity in strain isolates by RPLA; iv) to determine the chromosomal or plasmidic location of the cpe gene in enterotoxigenic strains previously isolated from food in our lab, using PCR; v) to correlate chromosomal cpe and spore heat-resistance; vi) to compare protease activity in cpe+ and cpe- strains; and vii) to compare azoreductase activity in cpe+ and cpe- strains. Twenty-six isolates had a count a 3-43 bacteria g(-1) count using MPN; 7.7% exceeded the Argentine Food Code (CAA) limit. All isolates showed protease activity: enterotoxigenic isolates had higher protease activity than non-enterotoxigenic isolates. All isolates showed azoreductase activity: enterotoxigenic isolates had higher activity and shorter reducing times. Enterotoxigenic isolates showed chromosomal location for the gene responsible for the enterotoxin.
Collapse
Affiliation(s)
- Mariana Georgina Corigliano
- General Microbiology, Area of Microbiology, Department of Biochemistry and Biological Sciences, Faculty of Chemistry, Biochemistry and Pharmacy, San Luis National University, Argentina
| | | | | |
Collapse
|