1
|
Absence of osmoregulated periplasmic glucan confers antimicrobial resistance and increases virulence in Escherichia coli. J Bacteriol 2021; 203:e0051520. [PMID: 33846116 DOI: 10.1128/jb.00515-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clarifying the molecular mechanisms by which bacteria acquire virulence traits is important toward understanding the bacterial virulence system. In the present study, we utilized a bacterial evolution method in a silkworm-infection model and revealed that deletion of the opgGH operon encoding synthases for osmoregulated periplasmic glucan (OPG) increased the virulence of non-pathogenic laboratory strain of Escherichia coli against silkworms. The opgGH knockout mutant exhibited resistance to the host antimicrobial peptides and antibiotics. Compared with the parent strain, the opgGH knockout mutant produced greater amounts of colanic acid, which is involved in E. coli resistance to antibiotics. RNA sequence analysis revealed that the opgGH knockout altered the expression of various genes, including the evgS/evgA two-component system that functions in antibiotic resistance. In both a colanic acid-negative background and evgS-null background, the opgGH knockout increased E. coli resistance to antibiotics and increased the silkworm killing activity of E. coli In the null background of the envZ/ompR two-component system, which genetically interacts with opgGH, the opgGH knockout increased the antibiotic resistance and the virulence in silkworms. These findings suggest that the absence of OPG confers antimicrobial resistance and virulence of E. coli in a colanic acid-, evgS/evgA-, and envZ/ompR- independent manner.IMPORTANCEThe gene mutation types that increase bacterial virulence of Escherichia coli remain unclear, in part due to the limited number of methods available for isolating bacterial mutants with increased virulence. We utilized a bacterial evolution method in the silkworm infection model, in which silkworms were infected with mutagenized bacteria and highly virulent bacterial mutants were isolated from dead silkworms. We revealed that knockout of OPG synthases increases E. coli virulence against silkworms. The OPG-knockout mutants were resistant to host antimicrobial peptides as well as antibiotics. Our findings not only suggest a novel mechanism for virulence acquisition in E. coli, but also support the usefulness of utilizing the bacterial experimental evolution method in the silkworm infection model.
Collapse
|
2
|
Meng J, Xu J, Chen J. The role of osmoregulated periplasmic glucans in the biofilm antibiotic resistance of Yersinia enterocolitica. Microb Pathog 2020; 147:104284. [PMID: 32492459 DOI: 10.1016/j.micpath.2020.104284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/28/2022]
Abstract
The formation of biofilms by bacteria is of great significance because it involves many physiological changes that serve to protect the cells from various stresses. One of the best-known biofilm-specific properties of bacteria is that bacteria that grow in biofilms are generally more resistant to antibiotics than their planktonic counterparts. In a previous study, osmoregulated periplasmic glucans (OPGs), catalyzed by the opgGH operon, were identified and found to function in Rcs signalling in Yersinia enterocolitica. In this study, the possible contribution of OPGs to antimicrobial resistance of Y. enterocolitica biofilms were investigated, and the results showed that OPGs, especially when overexpressed, conferred a high level of biofilm resistance to two different classes of antibiotics onto Y. enterocolitica. Subsequent analysis revealed that OPGs regulated the biofilm architecture in Y. enterocolitica by promoting the bacteria to form large cell aggregates. Moreover, the opgGH genes in biofilms showed higher expression than in planktonic cultures. OPGs were required to induce the expression of genes related to flagella, extracellular polysaccharide, and c-di-GMP biosynthesis in Y. enterocolitica biofilms and this effect was more significant when OPGs were overproduced. The current investigation showed an extension in the biological role of OPGs in Y. enterocolitica and provided a strong theoretical basis to further study this resistance mechanism at the molecular level to identify new drug targets or disinfectants for the treatment of infections caused by Y. enterocolitica within biofilms.
Collapse
Affiliation(s)
- Jiao Meng
- Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jingguo Xu
- Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jingyu Chen
- Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
3
|
Kang J, Liu L, Liu M, Wu X, Li J. Antibacterial activity of gallic acid against Shigella flexneri and its effect on biofilm formation by repressing mdoH gene expression. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.07.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
4
|
Bhagwat AA, Young L, Smith AD, Bhagwat M. Transcriptomic Analysis of the Swarm Motility Phenotype of Salmonella enterica Serovar Typhimurium Mutant Defective in Periplasmic Glucan Synthesis. Curr Microbiol 2017; 74:1005-1014. [PMID: 28593349 DOI: 10.1007/s00284-017-1267-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 05/14/2017] [Indexed: 12/19/2022]
Abstract
Movement of food-borne pathogens on moist surfaces enables them to migrate towards more favorable niches and facilitate their survival for extended periods of time. Salmonella enterica serovar Typhimurium mutants defective in Osmoregulated periplasmic glucans (OPG) synthesis are unable to exhibit motility on moist surfaces (swarming); however, their mobility in liquid (swim motility) remains unaffected. In order to understand the role of OPG in swarm motility, transcriptomic analysis was performed using cells growing on a moist agar surface. In opgGH deletion mutant, lack of OPG significantly altered transcription of 1039 genes out of total 4712 genes (22%). Introduction of a plasmid-borne copy of opgGH into opgGH deletion mutant restored normal expression of all but 30 genes, indicating a wide-range influence of OPG on gene expression under swarm motility condition. Major pathways that were differentially expressed in opgGH mutants were motility, virulence and invasion, and genes related to the secondary messenger molecule, cyclic di-GMP. These observations provide insights and help explain the pleiotropic nature of OPG mutants such as sub-optimal virulence and competitive organ colonization in mice, biofilm formation, and sensitivity towards detergent stress.
Collapse
Affiliation(s)
- Arvind A Bhagwat
- Environmental, Microbial, & Food Safety Laboratory, Beltsville Agriculture Research Center, USDA-ARS (USDA/ARS/EMFSL), 10300 Baltimore Ave., B173, Rm. 204, BARC-E, Beltsville, MD, 20705, USA.
| | - Lynn Young
- National Institutes of Health Library, Division of Library Services, Office of Research Services, National Institute of Health, Building 10, Bethesda, MD, 20892, USA
| | - Allen D Smith
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, USDA-ARS, Beltsville, MD, 20705, USA.
| | - Medha Bhagwat
- National Institutes of Health Library, Division of Library Services, Office of Research Services, National Institute of Health, Building 10, Bethesda, MD, 20892, USA
| |
Collapse
|
5
|
Bontemps-Gallo S, Lacroix JM. New insights into the biological role of the osmoregulated periplasmic glucans in pathogenic and symbiotic bacteria. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:690-7. [PMID: 26265506 PMCID: PMC4618058 DOI: 10.1111/1758-2229.12325] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/24/2015] [Accepted: 07/31/2015] [Indexed: 05/06/2023]
Abstract
This review emphasizes the biological roles of the osmoregulated periplasmic glucans (OPGs). Osmoregulated periplasmic glucans occur in almost all α-, β- and γ-Proteobacteria. This polymer of glucose is required for full virulence. The roles of the OPGs are complex and vary depending on the species. Here, we outline the four major roles of the OPGs through four different pathogenic and one symbiotic bacterial models (Dickeya dadantii, Salmonella enterica, Pseudomonas aeruginosa, Brucella abortus and Sinorhizobium meliloti). When periplasmic, the OPGs are a part of the signal transduction pathway and indirectly regulate genes involved in virulence. The OPGs can also be secreted. When outside of the cell, they interact directly with antibiotics to protect the bacterial cell or interact with the host cell to facilitate the invasion process. When OPGs are not found, as in the ε-Proteobacteria, OPG-like oligosaccharides are present. Their presence strengthens the evidence that OPGs play an important role in virulence.
Collapse
Affiliation(s)
- Sébastien Bontemps-Gallo
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT, 59840, USA. Phone: +1 (406) 363-9259.
| | - Jean-Marie Lacroix
- Structural and Functional Glycobiology Unit, UMR CNRS-Lille1 8576, University of Lille, 59655 Villeneuve d’Ascq cedex, France. Phone: +33 3 20 43 65 92.
| |
Collapse
|
6
|
Dharne MS, Kannan P, Murphy C, Smith AD, Bhagwat AA. Swarm and swim motilities of Salmonella enterica serovar Typhimurium and role of osmoregulated periplasmic glucans. ACTA ACUST UNITED AC 2015. [DOI: 10.7243/2052-6180-3-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Bhagwat AA, Leow YN, Liu L, Dharne M, Kannan P. Role of Anionic Charges of Periplasmic Glucans ofShigella flexneriin Overcoming Detergent Stress. Foodborne Pathog Dis 2012; 9:632-7. [PMID: 22730962 DOI: 10.1089/fpd.2011.1090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Arvind A. Bhagwat
- Environmental Microbial and Food Safety Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland
| | - Yi Ning Leow
- Environmental Microbial and Food Safety Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland
| | - Liu Liu
- Environmental Microbial and Food Safety Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland
| | - Mahesh Dharne
- Environmental Microbial and Food Safety Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland
| | - Porteen Kannan
- Environmental Microbial and Food Safety Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland
| |
Collapse
|
8
|
Bhagwat AA, Kannan P, Leow YN, Dharne M, Smith A. Role of anionic charges of osmoregulated periplasmic glucans of Salmonella enterica serovar Typhimurium SL1344 in mice virulence. Arch Microbiol 2012; 194:541-8. [PMID: 22278765 DOI: 10.1007/s00203-012-0791-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/16/2011] [Accepted: 01/04/2012] [Indexed: 01/17/2023]
Abstract
opgB gene of Salmonella enterica serovar Typhimurium was identified earlier in a genome-wide screen for mice virulence (Valentine et al. in Infect Immun 66:3378-3383, 1998). Although mutation in opgB resulted in avirulent Salmonella strain, how this gene contributes to pathogenesis remains unclear. Based on DNA homology, opgB is predicted to be responsible for adding phosphoglycerate residues to osmoregulated periplasmic glucans (OPGs) giving them anionic characteristics. In Escherichia coli, yet another gene, opgC, is also reported to contribute to anionic characteristics of OPGs by adding succinic acid residues. We constructed opgB, opgC, and opgBC double mutants of S. enterica serovar Typhimurium strain SL1344. As predicted opgBC mutant synthesized neutral OPGs that were devoid of any anionic substituents. However, opgB, opgC, and opgBC mutations had no significant impact on mice virulence as well as on competitive organ colonization. In low osmotic conditions, opgB, opgC, and opgBC mutants exhibited delay in growth initiation in the presence of sodium deoxycholate. Anionic substituents of OPGs from Salmonella although appear to be needed to overcome resistance of deoxycholate in hypoosmotic growth media, no evidence was found for their role in mice virulence.
Collapse
Affiliation(s)
- Arvind A Bhagwat
- Environmental Microbial and Food Safety Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, 10300 Baltimore Avenue, Bldg. 173, BARC-E, Beltsville, MD 20705-2350, USA.
| | | | | | | | | |
Collapse
|