1
|
Fan S, Shen Y, Qian L. Social life of free-living amoebae in aquatic environment- comprehensive insights into interactions of free-living amoebae with neighboring microorganisms. Front Microbiol 2024; 15:1382075. [PMID: 38962117 PMCID: PMC11220160 DOI: 10.3389/fmicb.2024.1382075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Free-living amoebae (FLA) are prevalent in nature and man-made environments, and they can survive in harsh conditions by forming cysts. Studies have discovered that some FLA species are able to show pathogenicity to human health, leading to severe infections of central nervous systems, eyes, etc. with an extremely low rate of recovery. Therefore, it is imperative to establish a surveillance framework for FLA in environmental habitats. While many studies investigated the risks of independent FLA, interactions between FLA and surrounding microorganisms determined microbial communities in ecosystems and further largely influenced public health. Here we systematically discussed the interactions between FLA and different types of microorganisms and corresponding influences on behaviors and health risks of FLA in the environment. Specifically, bacteria, viruses, and eukaryotes can interact with FLA and cause either enhanced or inhibited effects on FLA infectivity, along with microorganism community changes. Therefore, considering the co-existence of FLA and other microorganisms in the environment is of great importance for reducing environmental health risks.
Collapse
Affiliation(s)
| | | | - Li Qian
- Department of Civil and Environmental Engineering, School of Engineering and Applied Science, The George Washington University, Washington, DC, United States
| |
Collapse
|
2
|
Knowledge, Behavior, and Free-Living Amoebae Contamination of Cosmetic Contact Lens Among University Wearers in Thailand: A Cross-Sectional Study. Eye Contact Lens 2017; 43:81-88. [PMID: 26925535 DOI: 10.1097/icl.0000000000000246] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To assess the general knowledge, behavior, and presence of potentially pathogenic amoebae in cosmetic contact lens (CCL) wearers. METHODS One hundred CCL asymptomatic wearers were randomly selected. A questionnaire regarding their lens use, and a pair of their CCL was obtained. Identification of free-living amoeba (FLA) strains was based on morphological diagnosis, enflagellation tests (for non-Acanthamoeba strains), and sequencing of the small-subunit rRNA gene fragments. RESULTS Most (92%) of the participants surveyed were women, and the average age of the participants was 21.5±0.2 years. The CCL wearers generally showed a moderate (47%) or good (35%) level of knowledge, and good (51%) or excellent (40%) use of CCL. Two CCL samples were positive for Acanthamoeba genotype T3 or Vahlkampfia. The Acanthamoeba-contaminated CCL was from a wearer who used saline for treating lenses, and the Vahlkampfia-contaminated CCL was from a wearer who used CCL while swimming. CONCLUSIONS This is the first report of the presence of potentially pathogenic FLA in used CCL from asymptomatic wearers in Thailand. Although there was satisfactory knowledge and practice of lens care use, the public should be aware of CCL contaminated with potentially pathogenic FLA that can directly or indirectly cause keratitis.
Collapse
|
3
|
An observational study of phagocytes and Klebsiella pneumoniae relationships: different behaviors. Microbes Infect 2017; 19:259-266. [DOI: 10.1016/j.micinf.2016.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 10/20/2016] [Accepted: 12/21/2016] [Indexed: 12/21/2022]
|
4
|
Legionella pneumophila prevents proliferation of its natural host Acanthamoeba castellanii. Sci Rep 2016; 6:36448. [PMID: 27805070 PMCID: PMC5091012 DOI: 10.1038/srep36448] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/14/2016] [Indexed: 12/12/2022] Open
Abstract
Legionella pneumophila is a ubiquitous, pathogenic, Gram-negative bacterium responsible for legionellosis. Like many other amoeba-resistant microorganisms, L. pneumophila resists host clearance and multiplies inside the cell. Through its Dot/Icm type IV secretion system, the bacterium injects more than three hundred effectors that modulate host cell physiology in order to promote its own intracellular replication. Here we report that L. pneumophila prevents proliferation of its natural host Acanthamoeba castellanii. Infected amoebae could not undergo DNA replication and no cell division was observed. The Dot/Icm secretion system was necessary for L. pneumophila to prevent the eukaryotic proliferation. The absence of proliferation was associated with altered amoebal morphology and with a decrease of mRNA transcript levels of CDC2b, a putative regulator of the A. castellanii cell cycle. Complementation of CDC28-deficient Saccharomyces cerevisiae by the CDC2b cDNA was sufficient to restore proliferation of CDC28-deficient S. cerevisiae and suggests for the first time that CDC2b from A. castellanii could be functional and a bona fide cyclin-dependent kinase. Hence, our results reveal that L. pneumophila impairs proliferation of A. castellanii and this effect could involve the cell cycle protein CDC2b.
Collapse
|
5
|
Vermamoeba vermiformis-Aspergillus fumigatus relationships and comparison with other phagocytic cells. Parasitol Res 2016; 115:4097-4105. [PMID: 27381330 DOI: 10.1007/s00436-016-5182-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/23/2016] [Indexed: 10/21/2022]
Abstract
Free living amoebae (FLA) are protists ubiquitously present in the environment. Aspergillus fumigatus is a mould responsible for severe deep-seated infections, and that can be recovered in the same habitats as the FLA. By conducting coculture experiments and fungal incubation with amoebal supernatants, we report herein that Vermamoeba vermiformis, a FLA present in hospital water systems, promotes filamentation and growth of A. fumigatus. This finding is of particular importance to institutions whose water systems might harbor FLA and could potentially be used by immunocompromised patients. Also, the relationships between V. vermiformis and A. fumigatus were compared to those between this fungus and two other phagocytic cells: Acanthamoeba castellanii, another FLA, and macrophage-like THP-1 cells. After 4 h of coincubation, the percentages of the three phagocytic cell types with adhered conidia were similar, even though the types of receptors between FLA and macrophagic cell seemed different. However, the percentage of THP-1 with internalized conidia was considerably lower (40 %) in comparison with the two other cell types (100 %). Thus, this study revealed that interactions between A. fumigatus and these three phagocytic cell types show similarities, even though it is premature to extrapolate these results to interpret relationships between A. fumigatus and macrophages.
Collapse
|
6
|
Abstract
Burkholderia cepacia complex (Bcc) species are a group of Gram-negative opportunistic pathogens that infect the airways of cystic fibrosis patients, and occasionally they infect other immunocompromised patients. Bcc bacteria display high-level multidrug resistance and chronically persist in the infected host while eliciting robust inflammatory responses. Studies using macrophages, neutrophils, and dendritic cells, combined with advances in the genetic manipulation of these bacteria, have increased our understanding of the molecular mechanisms of virulence in these pathogens and the molecular details of cell-host responses triggering inflammation. This article discusses our current view of the intracellular survival of Burkholderia cenocepacia within macrophages.
Collapse
Affiliation(s)
- Miguel A. Valvano
- Centre for Infection and Immunity, Queen’s University Belfast, Belfast, BT9 7AE, UK
- Centre for Human Immunology, Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
7
|
Cateau E, Delafont V, Hechard Y, Rodier M. Free-living amoebae: what part do they play in healthcare-associated infections? J Hosp Infect 2014; 87:131-40. [DOI: 10.1016/j.jhin.2014.05.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 05/01/2014] [Indexed: 12/12/2022]
|
8
|
|
9
|
Kao PM, Hsu BM, Chen CT, Huang SW, Kao ES, Chen JL, Wu NM, Ji WT. Identification and quantification of the Acanthamoeba species and genotypes from reservoirs in Taiwan by molecular techniques. Acta Trop 2014; 132:45-50. [PMID: 24388954 DOI: 10.1016/j.actatropica.2013.12.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/19/2013] [Accepted: 12/23/2013] [Indexed: 10/25/2022]
Abstract
The occurrence of Acanthamoeba was investigated from 21 main reservoirs of Taiwan with 12 (57.1%) testing positive. Analysis of the 18S rRNA gene PCR product was performed in order to identify the Acanthamoeba isolates. Acanthamoeba spp. concentrations were determined according to TaqMan real-time qPCR. Acanthamoeba genotypes of all isolates were identified T4. The species were categorized to Acanthamoeba culbertsoni, Acanthamoeba polyphaga, Acanthamoeba castellanii and Acanthamoeba hatchetti. The concentration of Acanthamoeba spp. in detected positive reservoir water samples was in the range of 3.0-1.8 × 10(3) cells/L. These results highlight the importance of Acanthamoeba in reservoirs of potential pathogens and its possible role in the spread of bacterial genera with interest in public and environmental health.
Collapse
|
10
|
Buse HY, Lu J, Struewing IT, Ashbolt NJ. Eukaryotic diversity in premise drinking water using 18S rDNA sequencing: implications for health risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:6351-66. [PMID: 23589243 DOI: 10.1007/s11356-013-1646-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/13/2013] [Indexed: 05/08/2023]
Abstract
The goal of this study was to characterize microbial eukaryotes over a 12-month period to provide insight into the occurrence of potential bacterial predators and hosts in premise plumbing. Nearly 6,300 partial 18S rRNA gene sequences from 24 hot (36.9-39.0 °C) and cold (6.8-29.1 °C) drinking water samples were analyzed and classified into major eukaryotic groups. Each major group, consisting of free-living amoebae (FLA)/protozoa, algae, copepods, dinoflagellates, fungi, nematodes, and unique uncultured eukaryotic sequences, showed limited diversity dominated by a few distinct populations, which may be characteristic of oligotrophic environments. Changes in the relative abundance of predators such as nematodes, copepods, and FLA appear to be related to temperature and seasonal changes in water quality. Sequences nearly identical to FLA such as Hartmannella vermiformis, Echinamoeba thermarmum, Pseudoparamoeba pagei, Protacanthamoeba bohemica, Platyamoeba sp., and Vannella sp. were obtained. In addition to FLA, various copepods, rotifers, and nematodes have been reported to internalize viral and bacterial pathogens within drinking water systems thus potentially serving as transport hosts; implications of which are discussed further. Increasing the knowledge of eukaryotic occurrence and their relationship with potential pathogens should aid in assessing microbial risk associated with various eukaryotic organisms in drinking water.
Collapse
Affiliation(s)
- Helen Y Buse
- Dynamac c/o US Environmental Protection Agency, 26 W Martin Luther King Drive, Cincinnati, OH 45242, USA.
| | | | | | | |
Collapse
|
11
|
Messi P, Bargellini A, Anacarso I, Marchesi I, de Niederhäusern S, Bondi M. Protozoa and human macrophages infection by Legionella pneumophila environmental strains belonging to different serogroups. Arch Microbiol 2013; 195:89-96. [PMID: 23135482 DOI: 10.1007/s00203-012-0851-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/11/2012] [Accepted: 10/29/2012] [Indexed: 12/01/2022]
Abstract
Three Legionella pneumophila strains isolated from municipal hot tap water during a multicentric Italian survey and belonging to serogroups 1, 6, 9 and the reference strain Philadelphia-1 were studied to determine the intracellular replication capability and the cytopathogenicity in human monocyte cell line U937 and in an Acanthamoeba polyphaga strain. Our results show that both serogroups 1 and Philadelphia-1 were able to multiply into macrophages inducing cytopathogenicity, while serogroup 6 and ever more serogroup 9 were less efficient in leading to death of the infected macrophages. Both serogroups 1 and 6 displayed a quite good capability of intracellular replication in A. polyphaga, although serogroup 1 was less cytopathogenic than serogroup 6. Serogroup 9, like Philadelphia-1 strain, showed a reduced efficiency of infection and replication and a low cytopathogenicity towards the protozoan. Our study suggests that bacterial pathogenesis is linked to the difference in the virulence expression of L. pneumophila serogroups in both hosts, as demonstrated by the fact that only L. pneumophila serogroup 1 shows the contextual expression of the two virulence traits. Serogroup 6 proves to be a good candidate as pathogen since it shows a good capacity for intracellular replication in protozoan.
Collapse
Affiliation(s)
- Patrizia Messi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy.
| | | | | | | | | | | |
Collapse
|
12
|
Kao PM, Tung MC, Hsu BM, Tsai HL, She CY, Shen SM, Huang WC. Real-time PCR method for the detection and quantification of Acanthamoeba species in various types of water samples. Parasitol Res 2013; 112:1131-6. [DOI: 10.1007/s00436-012-3242-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 12/10/2012] [Indexed: 10/27/2022]
|
13
|
Anacarso I, de Niederhäusern S, Messi P, Guerrieri E, Iseppi R, Sabia C, Bondi M. Acanthamoeba polyphaga, a potential environmental vector for the transmission of food-borne and opportunistic pathogens. J Basic Microbiol 2011; 52:261-8. [PMID: 21953544 DOI: 10.1002/jobm.201100097] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 07/15/2011] [Indexed: 11/06/2022]
Abstract
The endosymbiotic relationship could represent for many bacteria an important condition favouring their spread in the environment and in foods. For this purpose we studied the behaviour of some food-borne and opportunistic pathogens (Listeria monocytogenes, Staphylococcus aureus, Enterococcus faecalis, Salmonella enterica serovar Enteritidis, Aeromonas hydrophila, Yersinia enterocolitica) when internalized in Acanthamoeba polyphaga. Our results confirm the capability of the bacteria tested to grow within amoebal hosts. We can observe two types of interactions of the bacteria internalized in A. polyphaga. The first type, showed by Y. enterocolitica and A. hydrophila, was characterized by an early replication, probably followed by the killing and digestion of the bacteria. The second type, showed by E. faecalis and S. aureus was characterized by the persistence and grow inside the host without lysis. Lastly, when amoebae were co-cultured with L. monocytogenes and S. Enteritidis, an eclipse phase followed by an active intracellular growth was observed, suggesting a third type of predator-prey trend. The extracellular count in presence of A. polyphaga, as a result of an intracellular multiplication and subsequent release, was characterized by an increase of E. faecalis, S. aureus, L. monocytogenes and S. Enteritidis, and by a low or absent cell count for Y. enterocolitica and A. hydrophila. Our study suggests that the investigated food-borne and opportunistic pathogens are, in most cases, able to interact with A. polyphaga, to intracellularly replicate and, lastly, to be potentially spread in the environment, underlining the possible role of this protozoan in food contamination.
Collapse
Affiliation(s)
- Immacolata Anacarso
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | |
Collapse
|