1
|
Faust V, van Alen TA, Op den Camp HJ, Vlaeminck SE, Ganigué R, Boon N, Udert KM. Ammonia oxidation by novel " Candidatus Nitrosacidococcus urinae" is sensitive to process disturbances at low pH and to iron limitation at neutral pH. WATER RESEARCH X 2022; 17:100157. [PMID: 36262799 PMCID: PMC9574496 DOI: 10.1016/j.wroa.2022.100157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/06/2022] [Accepted: 10/02/2022] [Indexed: 05/06/2023]
Abstract
Acid-tolerant ammonia-oxidizing bacteria (AOB) can open the door to new applications, such as partial nitritation at low pH. However, they can also be problematic because chemical nitrite oxidation occurs at low pH, leading to the release of harmful nitrogen oxide gases. In this publication, the role of acid-tolerant AOB in urine treatment was explored. On the one hand, the technical feasibility of ammonia oxidation under acidic conditions for source-separated urine with total nitrogen concentrations up to 3.5 g-N L-1 was investigated. On the other hand, the abundance and growth of acid-tolerant AOB at more neutral pH was explored. Under acidic conditions (pH of 5), ammonia oxidation rates of 500 mg-N L-1 d-1 and 10 g-N g-VSS-1 d-1 were observed, despite high concentrations of 15 mg-N L-1 of the AOB-inhibiting compound nitrous acid and low concentration of 0.04 mg-N L-1 of the substrate ammonia. However, ammonia oxidation under acidic conditions was very sensitive to process disturbances. Even short periods of less than 12 h without oxygen or without influent resulted in a complete cessation of ammonia oxidation with a recovery time of up to two months, which is a problem for low maintenance applications such as decentralized treatment. Furthermore, undesirable nitrogen losses of about 10% were observed. Under acidic conditions, a novel AOB strain was enriched with a relative abundance of up to 80%, for which the name "Candidatus (Ca.) Nitrosacidococcus urinae" is proposed. While Nitrosacidococcus members were present only to a small extent (0.004%) in urine nitrification reactors operated at pH values between 5.8 and 7, acid-tolerant AOB were always enriched during long periods without influent, resulting in an uncontrolled drop in pH to as low as 2.5. Long-term experiments at different pH values showed that the activity of "Ca. Nitrosacidococcus urinae" decreased strongly at a pH of 7, where they were also outcompeted by the acid-sensitive AOB Nitrosomonas halophila. The experiment results showed that the decreased activity of "Ca. Nitrosacidococcus urinae" correlated with the limited availability of dissolved iron at neutral pH.
Collapse
Affiliation(s)
- Valentin Faust
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland
| | - Theo A. van Alen
- Department of Microbiology, RIBES, Radboud University Nijmegen, 0268 Nijmegen, The Netherlands
| | - Huub J.M. Op den Camp
- Department of Microbiology, RIBES, Radboud University Nijmegen, 0268 Nijmegen, The Netherlands
| | - Siegfried E. Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, Faculty of Science, University of Antwerp, 2020 Antwerpen, Belgium
- Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), 9052 Gent, Belgium
| | - Ramon Ganigué
- Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), 9052 Gent, Belgium
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, 9000 Gent, Belgium
| | - Nico Boon
- Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), 9052 Gent, Belgium
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, 9000 Gent, Belgium
| | - Kai M. Udert
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland
- Corresponding author at: Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.
| |
Collapse
|
2
|
Laloo AE, Wei J, Wang D, Narayanasamy S, Vanwonterghem I, Waite D, Steen J, Kaysen A, Heintz-Buschart A, Wang Q, Schulz B, Nouwens A, Wilmes P, Hugenholtz P, Yuan Z, Bond PL. Mechanisms of Persistence of the Ammonia-Oxidizing Bacteria Nitrosomonas to the Biocide Free Nitrous Acid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5386-5397. [PMID: 29620869 DOI: 10.1021/acs.est.7b04273] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Free nitrous acid (FNA) exerts a broad range of antimicrobial effects on bacteria, although susceptibility varies considerably among microorganisms. Among nitrifiers found in activated sludge of wastewater treatment processes (WWTPs), nitrite-oxidizing bacteria (NOB) are more susceptible to FNA compared to ammonia-oxidizing bacteria (AOB). This selective inhibition of NOB over AOB in WWTPs bypasses nitrate production and improves the efficiency and costs of the nitrogen removal process in both the activated sludge and anaerobic ammonium oxidation (Anammox) system. However, the molecular mechanisms governing this atypical tolerance of AOB to FNA have yet to be understood. Herein we investigate the varying effects of the antimicrobial FNA on activated sludge containing AOB and NOB using an integrated metagenomics and label-free quantitative sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-MS) metaproteomic approach. The Nitrosomonas genus of AOB, on exposure to FNA, maintains internal homeostasis by upregulating a number of known oxidative stress enzymes, such as pteridine reductase and dihydrolipoyl dehydrogenase. Denitrifying enzymes were upregulated on exposure to FNA, suggesting the detoxification of nitrite to nitric oxide. Interestingly, proteins involved in stress response mechanisms, such as DNA and protein repair enzymes, phage prevention proteins, and iron transport proteins, were upregulated on exposure to FNA. In addition enzymes involved in energy generation were also upregulated on exposure to FNA. The total proteins specifically derived from the NOB genus Nitrobacter was low and, as such, did not allow for the elucidation of the response mechanism to FNA exposure. These findings give us an understanding of the adaptive mechanisms of tolerance within the AOB Nitrosomonas to the biocidal agent FNA.
Collapse
Affiliation(s)
- Andrew E Laloo
- Advanced Water Management Centre , The University of Queensland , St. Lucia , Brisbane , QLD 4072 , Australia
| | - Justin Wei
- Advanced Water Management Centre , The University of Queensland , St. Lucia , Brisbane , QLD 4072 , Australia
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education , Hunan University , Changsa 410082 , China
| | - Shaman Narayanasamy
- Luxembourg Centre for Systems Biomedicine , Université du Luxembourg , L-4362 Esch-sur-Alzette , Luxembourg
| | - Inka Vanwonterghem
- Australian Centre for Ecogenomics (ACE), School of Chemistry and Molecular Bioscience , The University of Queensland , St. Lucia , Brisbane , QLD 4072 , Australia
| | - David Waite
- Australian Centre for Ecogenomics (ACE), School of Chemistry and Molecular Bioscience , The University of Queensland , St. Lucia , Brisbane , QLD 4072 , Australia
| | - Jason Steen
- Australian Centre for Ecogenomics (ACE), School of Chemistry and Molecular Bioscience , The University of Queensland , St. Lucia , Brisbane , QLD 4072 , Australia
| | - Anne Kaysen
- Luxembourg Centre for Systems Biomedicine , Université du Luxembourg , L-4362 Esch-sur-Alzette , Luxembourg
| | - Anna Heintz-Buschart
- Luxembourg Centre for Systems Biomedicine , Université du Luxembourg , L-4362 Esch-sur-Alzette , Luxembourg
| | - Qilin Wang
- Griffith School of Engineering & Centre for Clean Environment and Energy , Griffith University , Nathan , QLD 4111 , Australia
| | - Benjamin Schulz
- School of Chemistry and Molecular Biosciences , The University of Queensland , St. Lucia , Brisbane , QLD 4072 , Australia
| | - Amanda Nouwens
- School of Chemistry and Molecular Biosciences , The University of Queensland , St. Lucia , Brisbane , QLD 4072 , Australia
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine , Université du Luxembourg , L-4362 Esch-sur-Alzette , Luxembourg
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics (ACE), School of Chemistry and Molecular Bioscience , The University of Queensland , St. Lucia , Brisbane , QLD 4072 , Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre , The University of Queensland , St. Lucia , Brisbane , QLD 4072 , Australia
| | - Philip L Bond
- Advanced Water Management Centre , The University of Queensland , St. Lucia , Brisbane , QLD 4072 , Australia
| |
Collapse
|
3
|
Fazary AE, Ju YH, Al-Shihri AS, Alfaifi MY, Alshehri MA. Biodegradable siderophores: survey on their production, chelating and complexing properties. REV INORG CHEM 2016. [DOI: 10.1515/revic-2016-0002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe academic and industrial research on the interactions of complexing agents with the environment has received more attention for more than half a century ago and has always been concerned with the applications of chelating agents in the environment. In contrast, in recent years, an increasing scholarly interest has been demonstrated in the chemical and biological degradation of chelating agents. This is reflected by the increasing number of chelating agents-related publications between 1950 and middle of 2016. Consequently, the discovery of new green biodegradable chelating agents is of great importance and has an impact in the non-biodegradable chelating agent’s replacement with their green chemistry analogs. To acquire iron, many bacteria growing aerobically, including marine species, produce siderophores, which are low-molecular-weight compounds produced to facilitate acquisition of iron. To date and to the best of our knowledge, this is a concise and complete review article of the current and previous relevant studies conducted in the field of production, purification of siderophore compounds and their metal complexes, and their roles in biology and medicine.
Collapse
|
6
|
Chatfield CH, Mulhern BJ, Viswanathan VK, Cianciotto NP. The major facilitator superfamily-type protein LbtC promotes the utilization of the legiobactin siderophore by Legionella pneumophila. MICROBIOLOGY-SGM 2011; 158:721-735. [PMID: 22160401 DOI: 10.1099/mic.0.055533-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The Gram-negative bacterium Legionella pneumophila elaborates the siderophore legiobactin. We previously showed that cytoplasmic LbtA helps mediate legiobactin synthesis, inner-membrane LbtB promotes export of legiobactin, and outer-membrane LbtU acts as the ferrisiderophore receptor. RT-PCR analyses now identified lbtC as an iron-repressed gene that is the final gene in an operon containing lbtA and lbtB. In silico analysis predicted that LbtC is an inner-membrane protein that belongs to the major facilitator superfamily (MFS). Although capable of normal growth in standard media, lbtC mutants were defective for growth on iron-depleted agar media. While producing normal levels of legiobactin, lbtC mutants were unable to utilize supplied legiobactin to stimulate growth on iron-depleted media and displayed an impaired ability to take up radiolabelled iron. All lbtC mutant phenotypes were complemented by reintroduction of an intact copy of lbtC. When a cloned copy of both lbtC and lbtU was introduced into a heterologous bacterium (Legionella longbeachae), the organism acquired the ability to utilize legiobactin to grow better on low-iron media. Together, these data indicate that LbtC is involved in the uptake of legiobactin, and based upon its predicted location is most likely the mediator of ferrilegiobactin transport across the inner membrane. The data are also a unique documentation of how an MFS protein can promote bacterial iron-siderophore import, standing in contrast to the vast majority of studies which have defined ABC-type permeases as the mediators of siderophore import across the Gram-negative inner membrane or the Gram-positive cytoplasmic membrane.
Collapse
Affiliation(s)
- Christa H Chatfield
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | - Brendan J Mulhern
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | - V K Viswanathan
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | - Nicholas P Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| |
Collapse
|
7
|
Abstract
The study of traits of ammonia-oxidizing bacteria (AOB) by genetic transformation is an approach that is facilitated by the availability of AOB genome sequences. To transform an AOB, a vector construct is introduced into the cells by electroporation or conjugation to effect the inactivation, complementation, or expression of a selected gene. For inactivation studies, the vector construct should contain the gene of interest with an antibiotic resistance cassette and recombine into the cell's chromosome. For gene expression studies, a wide-host range vector with a transcriptional gene fusion can be used to test for gene roles. For gene complementation studies, a wide-host range vector expressing the inactivated gene can be used to recover the lost function in an AOB mutant strain. This chapter is a compilation of the methods that have been used to transform the AOB Nitrosomonas europaea and Nitrosospira multiformis and of the considerations and caveats to successfully produce, maintain, and store AOB transformants. The protocols may be applied to other AOB.
Collapse
|
8
|
Dissecting iron uptake and homeostasis in Nitrosomonas europaea. Methods Enzymol 2010. [PMID: 21185446 DOI: 10.1016/b978-0-12-381294-0.00018-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The chemolithoautotroph Nitrosomonas europaea oxidizes about 25 mol of NH(3) for each mole of CO(2) that is converted to biomass using an array of heme and nonheme Fe-containing proteins. Hence mechanisms of efficient iron (Fe) uptake and homeostasis are particularly important for this Betaproteobacterium. Among nitrifiers, N.europaea has been the most studied to date. Characteristics that make N.europaea a suitable model to study Fe uptake and homeostasis are as follows: (a) its sequenced genome, (b) its capability to grow relatively well in 0.2 μM Fe in the absence of heterologous siderophores, and (c) its amenability to mutagenesis. In this chapter, we describe the methodology we use in our laboratory to dissect Fe uptake and homeostasis in the ammonia oxidizer N. europaea.
Collapse
|