1
|
Mycobacterial OtsA Structures Unveil Substrate Preference Mechanism and Allosteric Regulation by 2-Oxoglutarate and 2-Phosphoglycerate. mBio 2019; 10:mBio.02272-19. [PMID: 31772052 PMCID: PMC6879718 DOI: 10.1128/mbio.02272-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mycobacterial infections are a significant source of mortality worldwide, causing millions of deaths annually. Trehalose is a multipurpose disaccharide that plays a fundamental structural role in these organisms as a component of mycolic acids, a molecular hallmark of the cell envelope of mycobacteria. Here, we describe the first mycobacterial OtsA structures. We show mechanisms of substrate preference and show that OtsA is regulated allosterically by 2-oxoglutarate and 2-phosphoglycerate at an interfacial site. These results identify a new allosteric site and provide insight on the regulation of trehalose synthesis through the OtsAB pathway in mycobacteria. Trehalose is an essential disaccharide for mycobacteria and a key constituent of several cell wall glycolipids with fundamental roles in pathogenesis. Mycobacteria possess two pathways for trehalose biosynthesis. However, only the OtsAB pathway was found to be essential in Mycobacterium tuberculosis, with marked growth and virulence defects of OtsA mutants and strict essentiality of OtsB2. Here, we report the first mycobacterial OtsA structures from Mycobacterium thermoresistibile in both apo and ligand-bound forms. Structural information reveals three key residues in the mechanism of substrate preference that were further confirmed by site-directed mutagenesis. Additionally, we identify 2-oxoglutarate and 2-phosphoglycerate as allosteric regulators of OtsA. The structural analysis in this work strongly contributed to define the mechanisms for feedback inhibition, show different conformational states of the enzyme, and map a new allosteric site.
Collapse
|
2
|
Wu X, Hou Z, Huang C, Chen Q, Gao W, Zhang J. Cloning, purification and characterization of trehalose-6-phosphate synthase from Pleurotus tuoliensis. PeerJ 2018; 6:e5230. [PMID: 30013854 PMCID: PMC6046196 DOI: 10.7717/peerj.5230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/22/2018] [Indexed: 12/05/2022] Open
Abstract
Pleurotus tuoliensis, a kind of valuable and favorable edible mushroom in China, is always subjected to high environmental temperature during cultivation. In our previous study with P. tuoliensis, trehalose proved to be effective for tolerating heat stress. Trehalose-6-phosphate synthase (TPS; EC2.4.1.15) plays a key role in the biosynthesis of trehalose in fungi. In this study, a full-length of cDNA with 1,665 nucleotides encoding TPS (PtTPS) in P. tuoliensis was cloned. The PtTPS amino acid was aligned with other homologues and several highly conserved regions were analyzed. Thus, the TPS protein was expressed in Escherichia coli and purified by affinity chromatography to test its biochemical properties. The molecular mass of the enzyme is about 60 kDa and the optimum reaction temperature and pH is 30 °C and 7, respectively. The UDP-glucose and glucose-6-phosphate were the optimum substrates among all the tested glucosyl donors and acceptors. Metal cations like Mg2+, Co2+, Mn2+, Ni2+, K+, Ag+ stimulated PtTPS activity significantly. Metal chelators such as sodium citrate, citric acid, EDTA, EGTA and CDTA inhibited enzyme activity. Polyanions like heparin and chondroitin sulfate were shown to stimulate TPS activity.
Collapse
Affiliation(s)
- Xiangli Wu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Zhihao Hou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Chenyang Huang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Qiang Chen
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Wei Gao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Jinxia Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| |
Collapse
|
3
|
Chen X, An L, Fan X, Ju F, Zhang B, Sun H, Xiao J, Hu W, Qu T, Guan L, Tang S, Chen T, Liu G, Dyson P. A trehalose biosynthetic enzyme doubles as an osmotic stress sensor to regulate bacterial morphogenesis. PLoS Genet 2017; 13:e1007062. [PMID: 29084224 PMCID: PMC5685639 DOI: 10.1371/journal.pgen.1007062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 11/14/2017] [Accepted: 10/09/2017] [Indexed: 11/18/2022] Open
Abstract
The dissacharide trehalose is an important intracellular osmoprotectant and the OtsA/B pathway is the principal pathway for trehalose biosynthesis in a wide range of bacterial species. Scaffolding proteins and other cytoskeletal elements play an essential role in morphogenetic processes in bacteria. Here we describe how OtsA, in addition to its role in trehalose biosynthesis, functions as an osmotic stress sensor to regulate cell morphology in Arthrobacter strain A3. In response to osmotic stress, this and other Arthrobacter species undergo a transition from bacillary to myceloid growth. An otsA null mutant exhibits constitutive myceloid growth. Osmotic stress leads to a depletion of trehalose-6-phosphate, the product of the OtsA enzyme, and experimental depletion of this metabolite also leads to constitutive myceloid growth independent of OtsA function. In vitro analyses indicate that OtsA can self-assemble into protein networks, promoted by trehalose-6-phosphate, a property that is not shared by the equivalent enzyme from E. coli, despite the latter’s enzymatic activity when expressed in Arthrobacter. This, and the localization of the protein in non-stressed cells at the mid-cell and poles, indicates that OtsA from Arthrobacter likely functions as a cytoskeletal element regulating cell morphology. Recruiting a biosynthetic enzyme for this morphogenetic function represents an intriguing adaptation in bacteria that can survive in extreme environments. For free living bacteria, little is known about how environmental cues are perceived and translated into changes in cell morphology. Here we describe how a biosynthetic enzyme involved in synthesis of an important intracellular osmoprotectant doubles as an osmotic stress sensing morphogenetic protein. This protein is involved in an adaptive response involving a growth transition in stress-tolerant bacteria, from growing as individual cells to forming non-separating branched cell aggregates. We demonstrate that the protein can self-assemble into large networks, consistent with its role as a morphogenetic protein, this assembly process being promoted by a metabolic product of the enzyme. Depletion of either this metabolite or the morphogenetic protein results in the inability of the bacteria to grow as individual cells in conditions of low osmolarity.
Collapse
Affiliation(s)
- Ximing Chen
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, China
- State Key Laboratory of Arid and Grassland Agroecology of Ministry of Education, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou, Gansu, China
| | - Lizhe An
- State Key Laboratory of Arid and Grassland Agroecology of Ministry of Education, Lanzhou University, Lanzhou, Gansu, China
- * E-mail: (PD); (LA)
| | - Xiaochuan Fan
- State Key Laboratory of Arid and Grassland Agroecology of Ministry of Education, Lanzhou University, Lanzhou, Gansu, China
| | - Furong Ju
- State Key Laboratory of Arid and Grassland Agroecology of Ministry of Education, Lanzhou University, Lanzhou, Gansu, China
| | - Binglin Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou, Gansu, China
| | - Haili Sun
- School of Chemistry and Environmental Science, Lanzhou City University, Lanzhou, Gansu, China
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Wei Hu
- State Key Laboratory of Arid and Grassland Agroecology of Ministry of Education, Lanzhou University, Lanzhou, Gansu, China
| | - Tao Qu
- State Key Laboratory of Arid and Grassland Agroecology of Ministry of Education, Lanzhou University, Lanzhou, Gansu, China
| | - Liping Guan
- State Key Laboratory of Arid and Grassland Agroecology of Ministry of Education, Lanzhou University, Lanzhou, Gansu, China
| | - Shukun Tang
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
| | - Tuo Chen
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou, Gansu, China
| | - Guangxiu Liu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou, Gansu, China
| | - Paul Dyson
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
- * E-mail: (PD); (LA)
| |
Collapse
|
4
|
Enzymatic and regulatory properties of the trehalose-6-phosphate synthase from the thermoacidophilic archaeon Thermoplasma acidophilum. Biochimie 2014; 101:215-20. [PMID: 24508535 DOI: 10.1016/j.biochi.2014.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/27/2014] [Indexed: 11/22/2022]
Abstract
Trehalose-6-phosphate synthase plays an important role in trehalose metabolism. It catalyzes the transfer of glucose from UDP-glucose (UDPG) to glucose 6-phosphate to produce trehalose-6-phosphate. Herein we describe the characterization of a trehalose-6-phosphate synthase from the thermoacidophilic archaeon Thermoplasma acidophilum. The dimeric enzyme could utilize UDPG, ADP-Glucose (ADPG) and GDP-Glucose (GDPG) as glycosyl donors and various phosphorylated monosaccharides as glycosyl acceptors. The optimal temperature and pH were found to be 60 °C and pH 6, and the enzyme exhibited notable pH and thermal stability. The enzymatic activity could be stimulated by divalent metal ions and polyanions heparin and chondroitin sulfate. Moreover, the protein was considerably resistant to additives ethanol, EDTA, urea, DTT, SDS, β-mercaptoethanol, methanol, isopropanol and n-butanol. Molecular modeling and mutagenesis analysis revealed that the N-loop region was important for the catalytic efficiency of the enzyme, indicating different roles of N-loop sequences in different trehalose-6-phosphate synthases.
Collapse
|
5
|
Nagabhyru P, Dinkins RD, Wood CL, Bacon CW, Schardl CL. Tall fescue endophyte effects on tolerance to water-deficit stress. BMC PLANT BIOLOGY 2013; 13:127. [PMID: 24015904 PMCID: PMC3848598 DOI: 10.1186/1471-2229-13-127] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 08/01/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND The endophytic fungus, Neotyphodium coenophialum, can enhance drought tolerance of its host grass, tall fescue. To investigate endophyte effects on plant responses to acute water deficit stress, we did comprehensive profiling of plant metabolite levels in both shoot and root tissues of genetically identical clone pairs of tall fescue with endophyte (E+) and without endophyte (E-) in response to direct water deficit stress. The E- clones were generated by treating E+ plants with fungicide and selectively propagating single tillers. In time course studies on the E+ and E- clones, water was withheld from 0 to 5 days, during which levels of free sugars, sugar alcohols, and amino acids were determined, as were levels of some major fungal metabolites. RESULTS After 2-3 days of withholding water, survival and tillering of re-watered plants was significantly greater for E+ than E- clones. Within two to three days of withholding water, significant endophyte effects on metabolites manifested as higher levels of free glucose, fructose, trehalose, sugar alcohols, proline and glutamic acid in shoots and roots. The fungal metabolites, mannitol and loline alkaloids, also significantly increased with water deficit. CONCLUSIONS Our results suggest that symbiotic N. coenophialum aids in survival and recovery of tall fescue plants from water deficit, and acts in part by inducing rapid accumulation of these compatible solutes soon after imposition of stress.
Collapse
Affiliation(s)
- Padmaja Nagabhyru
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546-0312, USA
| | - Randy D Dinkins
- USDA-ARS, Forage-Animal Production Research Unit, Lexington, KY 40546-0091, USA
| | - Constance L Wood
- Department of Statistics, University of Kentucky, Lexington, KY 40506-0027, USA
| | - Charles W Bacon
- USDA-ARS, Toxicology and Mycotoxin Research Unit, Athens, GA 30605-2720, USA
| | - Christopher L Schardl
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546-0312, USA
| |
Collapse
|
6
|
Genome Sequence of Streptomyces violaceusniger Strain SPC6, a Halotolerant Streptomycete That Exhibits Rapid Growth and Development. GENOME ANNOUNCEMENTS 2013; 1:1/4/e00494-13. [PMID: 23868127 PMCID: PMC3715669 DOI: 10.1128/genomea.00494-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptomyces violaceusniger strain SPC6 is a halotolerant streptomycete isolated from the Linze desert in China. The strain has a very high growth rate and a short life cycle for a streptomycete. For surface-grown cultures, the period from spore germination to formation of colonies with mature spore chains is only 2 days at 37°C. Additionally, the strain is remarkably resistant to osmotic, heat, and UV stress compared with other streptomycetes. Analysis of the draft genome sequence indicates that the strain has the smallest reported genome (6.4 Mb) of any streptomycete. The availability of this genome sequence allows us to investigate the genetic basis of adaptation for growth in an extremely arid environment.
Collapse
|
7
|
Chen XM, Jiang Y, Li YT, Zhang HH, Li J, Chen X, Zhao Q, Zhao J, Si J, Lin ZW, Zhang H, Dyson P, An LZ. Regulation of expression of trehalose-6-phosphate synthase during cold shock in Arthrobacter strain A3. Extremophiles 2011; 15:499-508. [DOI: 10.1007/s00792-011-0380-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 05/20/2011] [Indexed: 10/18/2022]
|