Antonacci M, Maqoud F, Di Turi A, Miciaccia M, Perrone MG, Scilimati A, Tricarico D. KATP Channel Inhibitors Reduce Cell Proliferation Through Upregulation of H3K27ac in Diffuse Intrinsic Pontine Glioma: A Functional Expression Investigation.
Cancers (Basel) 2025;
17:358. [PMID:
39941728 PMCID:
PMC11816144 DOI:
10.3390/cancers17030358]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/04/2025] [Accepted: 01/14/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND
Diffuse intrinsic pontine glioma [DIPG] is a fatal pediatric disease characterized by a post-translational modification, a replacement of lysine by methionine in position 27 of the N-terminal [H3K27M] tail of histone 3 isoform-1 [H3.1] or histone 3 isoform-3 [H3.3], respectively, expressed in the DIPG-36 and DIPG-50 cells. We investigated the role of cation channels in DIPG cells for the first time and the effects of ATP-sensitive K+[KATP] and TRPV1 channel modulators.
METHODS
Experiments were performed using "in vitro" cytotoxic assays combined with the patch clamp technique, RT-PCR, Western blot, and flow cytometry assays.
RESULTS
The most effective anti-proliferative drugs were repaglinide and glibenclamide after short and long-term incubation [6-96 h]. These drugs reduced macroscopic currents of the DIPG cells recorded in whole-cell patch clamp. Repaglinide concentration dependently enhanced the target protein H3K27ac in Western blotting after 48 h of incubation. This drug reduced cell diameter and enhanced cleaved caspase-3 in DIPG cells; total AKT/mTOR levels and phospho-mTOR were downregulated in DIPG-36.
CONCLUSIONS
KATP and TRPV1 channels are functionally expressed, and sulphonylureas are effective antiproliferative upregulating H3K27ac with apoptosis in DIPG cells and the sub-micromolar concentrations in DIPG-50.
Collapse