1
|
Hnini M, Aurag J. Prevalence, diversity and applications potential of nodules endophytic bacteria: a systematic review. Front Microbiol 2024; 15:1386742. [PMID: 38812696 PMCID: PMC11133547 DOI: 10.3389/fmicb.2024.1386742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Legumes are renowned for their distinctive biological characteristic of forming symbiotic associations with soil bacteria, mostly belonging to the Rhizobiaceae familiy, leading to the establishment of symbiotic root nodules. Within these nodules, rhizobia play a pivotal role in converting atmospheric nitrogen into a plant-assimilable form. However, it has been discerned that root nodules of legumes are not exclusively inhabited by rhizobia; non-rhizobial endophytic bacteria also reside within them, yet their functions remain incompletely elucidated. This comprehensive review synthesizes available data, revealing that Bacillus and Pseudomonas are the most prevalent genera of nodule endophytic bacteria, succeeded by Paenibacillus, Enterobacter, Pantoea, Agrobacterium, and Microbacterium. To date, the bibliographic data available show that Glycine max followed by Vigna radiata, Phaseolus vulgaris and Lens culinaris are the main hosts for nodule endophytic bacteria. Clustering analysis consistently supports the prevalence of Bacillus and Pseudomonas as the most abundant nodule endophytic bacteria, alongside Paenibacillus, Agrobacterium, and Enterobacter. Although non-rhizobial populations within nodules do not induce nodule formation, their presence is associated with various plant growth-promoting properties (PGPs). These properties are known to mediate important mechanisms such as phytostimulation, biofertilization, biocontrol, and stress tolerance, emphasizing the multifaceted roles of nodule endophytes. Importantly, interactions between non-rhizobia and rhizobia within nodules may exert influence on their leguminous host plants. This is particularly shown by co-inoculation of legumes with both types of bacteria, in which synergistic effects on plant growth, yield, and nodulation are often measured. Moreover these effects are pronounced under both stress and non-stress conditions, surpassing the impact of single inoculations with rhizobia alone.
Collapse
Affiliation(s)
| | - Jamal Aurag
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
2
|
Boubakri H, Najjar E, Jihnaoui N, Chihaoui SA, Barhoumi F, Jebara M. Genome-wide identification, characterization and expression analysis of glutaredoxin gene family (Grxs) in Phaseolus vulgaris. Gene 2022; 833:146591. [PMID: 35597531 DOI: 10.1016/j.gene.2022.146591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/19/2022] [Accepted: 05/16/2022] [Indexed: 01/29/2023]
Abstract
Glutaredoxins (Grxs) are ubiquitous oxidoreductase proteins implicated in development and abiotic stress response mainly through maintaining redox homoeostasis. Here, we conducted the first systematic analysis of the Grx gene family (PvGrx) in the most popular legume Phaseolus vulgaris (common bean). A total of 50 PvGrx genes were identified, and divided into four classes (CC-type, CGFS-type, CPYC-type and Grl-type) based on the phylogenetic analysis. The different classes have different introns-exons structures and conserved motifs, indicating functional divergence in the PvGrx family. Both tandem and segmental duplications were found to be involved in the expansion of PvGrx family that underwent a purifying selection by excluding the deleterious loss-of-function mutations. Cis-acting regulatory elements and gene ontology analyses predicted their role of distinctive members in abiotic stress response and hormonal signalling. RNA-seq based expression analysis revealed their differential expression pattern during plant development. On the other hand, RT q-PCR analysis revealed that target PvGrx isoforms were associated with nodule organogenesis and symbiosis based on their expression profiles. In addition, a battery of PvGrx candidates were markedly upregulated by different abiotic stressors suggesting their broad spectrum of functions. These findings serve as a reference for functional analysis and genetic improvement in P. vulgaris and related legume species.
Collapse
Affiliation(s)
- Hatem Boubakri
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, BP 901, 2050 Hammam-Lif, Tunisia.
| | - Eya Najjar
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Nada Jihnaoui
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Saif-Allah Chihaoui
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Fathi Barhoumi
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Moez Jebara
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
3
|
Boubakri H, Chihaoui SA, Najjar E, Gargouri M, Barhoumi F, Jebara M. Genome-wide analysis and expression profiling of H-type Trx family in Phaseolus vulgaris revealed distinctive isoforms associated with symbiotic N 2-fixing performance and abiotic stress response. JOURNAL OF PLANT PHYSIOLOGY 2021; 260:153410. [PMID: 33765508 DOI: 10.1016/j.jplph.2021.153410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/27/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Thioredoxins (Trxs) are implicated in plant development and stress tolerance through redox regulation of target proteins. Trxs of Type h (Trxhs) constitute the largest and the most complicated cluster in the Trx family because of their unknown individual functions. Here, we identified and characterized the Phaseolus vulgaris Trxh family during development, mutualistic interactions and in response to abiotic stress. P. vulgaris (common bean) Trxh gene family (PvTrxh) encompasses 12 isoforms (PvTrxh1-h12), subdivided into 3 groups according to their amino acid sequence features. In silico RNA-seq -based expression analysis showed a differential expression of PvTrxh genes during development. RT-qPCR analysis of PvTrxh genes during nodule organogenesis revealed their highest expression in the nodule primordium (NP). Interestingly, in response to symbiosis, specific PvTrxh isoforms (PvTrxh3 and h5) were found to be highly upregulated compared to mock-inoculated plants. In addition, their expression patterns in the NP positively correlated with the symbiotic N2-fixing efficiency of the Rhizobium strain, as revealed by a number of symbiotic efficiency parameters (ARA, leghemoglobin content, biomass, and total soluble proteins), concomitantly with increased amounts of hydrogen peroxide (H2O2). On the other hand, distinctive PvTrxh isoforms were found to be upregulated in plant leaves, where H2O2 amounts were elevated, in response to both salt and drought constraints. When exogenously applied, H2O2 upregulated specific PvTrxh isoforms in plant leaves and roots. These findings point to a specific, rather than redundant, function for Trxh proteins in common bean beside the association of distinctive Trxh isoforms with symbiosis and abiotic stress response.
Collapse
Affiliation(s)
- Hatem Boubakri
- Laboratory of Legumes, Centre of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-Lif, Tunisia.
| | - Saif-Allah Chihaoui
- Laboratory of Legumes, Centre of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-Lif, Tunisia
| | - Eya Najjar
- Laboratory of Legumes, Centre of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-Lif, Tunisia
| | - Mahmoud Gargouri
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-Lif, Tunisia
| | - Fathi Barhoumi
- Laboratory of Legumes, Centre of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-Lif, Tunisia
| | - Moez Jebara
- Laboratory of Legumes, Centre of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-Lif, Tunisia
| |
Collapse
|
4
|
de Souza EM, Granada CE, Sperotto RA. Plant Pathogens Affecting the Establishment of Plant-Symbiont Interaction. FRONTIERS IN PLANT SCIENCE 2016; 7:15. [PMID: 26834779 PMCID: PMC4721146 DOI: 10.3389/fpls.2016.00015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/07/2016] [Indexed: 05/19/2023]
Affiliation(s)
- Eduardo M. de Souza
- Programa de Pós-Graduação em Biotecnologia, Centro Universitário UNIVATESLajeado, Brazil
| | - Camille E. Granada
- Programa de Pós-Graduação em Biotecnologia, Centro Universitário UNIVATESLajeado, Brazil
- Centro de Gestão Organizacional, Centro Universitário UNIVATESLajeado, Brazil
| | - Raul A. Sperotto
- Programa de Pós-Graduação em Biotecnologia, Centro Universitário UNIVATESLajeado, Brazil
- Setor de Genética e Biologia Molecular do Museu de Ciências Naturais, Centro de Ciências Biológicas e da Saúde, Centro Universitário UNIVATESLajeado, Brazil
- *Correspondence: Raul A. Sperotto
| |
Collapse
|
5
|
Chihaoui SA, Trabelsi D, Jdey A, Mhadhbi H, Mhamdi R. Inoculation of Phaseolus vulgaris with the nodule-endophyte Agrobacterium sp. 10C2 affects richness and structure of rhizosphere bacterial communities and enhances nodulation and growth. Arch Microbiol 2015; 197:805-13. [PMID: 25967041 DOI: 10.1007/s00203-015-1118-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 04/28/2015] [Accepted: 05/05/2015] [Indexed: 11/25/2022]
Abstract
Agrobacterium sp. 10C2 is a nonpathogenic and non-symbiotic nodule-endophyte strain isolated from root nodules of Phaseolus vulgaris. The effect of this strain on nodulation, plant growth and rhizosphere bacterial communities of P. vulgaris is investigated under seminatural conditions. Inoculation with strain 10C2 induced an increase in nodule number (+54 %) and plant biomass (+16 %). Grains also showed a significant increase in phosphorus (+53 %), polyphenols (+217 %), flavonoids (+62 %) and total antioxidant capacity (+82 %). The effect of strain 10C2 on bacterial communities was monitored using terminal restriction fragment length polymorphism of PCR-amplified 16S rRNA genes. When the initial soil was inoculated with strain 10C2 and left 15 days, the Agrobacterium strain did not affect TRF richness but changed structure. When common bean was sown in these soils and cultivated during 75 days, both TRF richness and structure were affected by strain 10C2. TRF richness increased in the rhizosphere soil, while it decreased in the bulk soil (root free). The taxonomic assignation of TRFs induced by strain 10C2 in the bean rhizosphere revealed the presence of four phyla (Firmicutes, Actinobacteria, Bacteroidetes and Proteobacteria) with a relative preponderance of Firmicutes, represented mainly by Bacillus species. Some of these taxa (i.e., Bacillus licheniformis, Bacillus pumilus, Bacillus senegalensis, Bacillus subtilis, Bacillus firmus and Paenibacillus koreensis) are particularly known for their plant growth-promoting potentialities. These results suggest that the beneficial effects of strain 10C2 observed on plant growth and grain quality are explained at least in part by the indirect effect through the promotion of beneficial microorganisms.
Collapse
Affiliation(s)
- Saif-Allah Chihaoui
- Laboratory of Legumes, Centre of Biotechnology of Borj-Cédria, BP 901, 2050, Hammam-Lif, Tunisia
| | | | | | | | | |
Collapse
|
6
|
Pandya M, Rajput M, Rajkumar S. Exploring plant growth promoting potential of non rhizobial root nodules endophytes of Vigna radiata. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715010105] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Verástegui-Valdés MM, Zhang YJ, Rivera-Orduña FN, Cheng HP, Sui XH, Wang ET. Microsymbionts of Phaseolus vulgaris in acid and alkaline soils of Mexico. Syst Appl Microbiol 2014; 37:605-12. [PMID: 25294010 DOI: 10.1016/j.syapm.2014.08.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 08/06/2014] [Accepted: 08/11/2014] [Indexed: 11/18/2022]
Abstract
In order to investigate bean-nodulating rhizobia in different types of soil, 41 nodule isolates from acid and alkaline soils in Mexico were characterized. Based upon the phylogenetic studies of 16S rRNA, atpD, glnII, recA, rpoB, gyrB, nifH and nodC genes, the isolates originating from acid soils were identified as the phaseoli symbiovar of the Rhizobium leguminosarum-like group and Rhizobium grahamii, whereas the isolates from alkaline soils were defined as Ensifer americanum sv. mediterranense and Rhizobium radiobacter. The isolates of "R. leguminosarum" and E. americanum harbored nodC and nifH genes, but the symbiotic genes were not detected in the four isolates of the other two species. It was the first time that "R. leguminosarum" and E. americanum have been reported as bean-nodulating bacteria in Mexico. The high similarity of symbiotic genes in the Rhizobium and Ensifer populations showed that these genes had the same origin and have diversified recently in different rhizobial species. Phenotypic characterization revealed that the "R. leguminosarum" population was more adapted to the acid and low salinity conditions, while the E. americanum population preferred alkaline conditions. The findings of this study have improved the knowledge of the diversity, geographic distribution and evolution of bean-nodulating rhizobia in Mexico.
Collapse
Affiliation(s)
- Myrthala M Verástegui-Valdés
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, C.P. 11430, Mexico, D.F., Mexico
| | - Yu Jing Zhang
- State Key Laboratory of Agrobiotechnology and Center of Biomass Engineering, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Flor N Rivera-Orduña
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, C.P. 11430, Mexico, D.F., Mexico
| | - Hai-Ping Cheng
- Biological Sciences Department, Lehman College and Graduate Center, The City University of New York, Bronx, NY, USA
| | - Xing Hua Sui
- State Key Laboratory of Agrobiotechnology and Center of Biomass Engineering, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - En Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, C.P. 11430, Mexico, D.F., Mexico.
| |
Collapse
|
8
|
Characterization of root-nodule bacteria isolated from Vicia faba and selection of plant growth promoting isolates. World J Microbiol Biotechnol 2013; 29:1099-106. [PMID: 23397108 DOI: 10.1007/s11274-013-1278-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/30/2013] [Indexed: 10/27/2022]
Abstract
A collection of 104 isolates from root-nodules of Vicia faba was submitted to 16S rRNA PCR-RFLP typing. A representative sample was further submitted to sequence analysis of 16S rRNA. Isolates were assigned to 12 genera. All the nodulating isolates (45 %) were closely related to Rhizobium leguminosarum USDA2370(T) (99.34 %). The remaining isolates, including potential human pathogens, failed to nodulate their original host. They were checked for presence of symbiotic genes, P-solubilization, phytohormone and siderophore production, and then tested for their growth promoting abilities. Results indicated that 9 strains could induce significant increase (41-71 %) in shoot dry yield of faba bean. A Pseudomonas strain was further assessed in on-farm trial in combination with a selected rhizobial strain. This work indicated that nodule-associated bacteria could be a valuable pool for selection of effective plant growth promoting isolates. Nevertheless, the possible involvement of nodules in increasing risks related to pathogenic bacteria should not be neglected and needs to be investigated further.
Collapse
|