1
|
Chen S, Peng L, Xu Y, Wang N, Wang X, Liang C, Song K, Zhou Y. Modeling Free Nitrous Acid Inhibition on the Removal of Nitrogen and Atenolol during Sidestream Partial Nitritation Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5162-5173. [PMID: 38358933 DOI: 10.1021/acs.est.3c10107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Sidestream serves as an important reservoir collecting pharmaceuticals from sludge. However, the knowledge on sidestream pharmaceutical removal is still insufficient. In this work, atenolol biodegradation during sidestream partial nitritation (PN) processes characterized by high free nitrous acid (FNA) accumulation was modeled. To describe the FNA inhibition on ammonia oxidation and atenolol removal, Vadivelu-type and Hellinga-type inhibition kinetics were introduced into the model framework. Four inhibitory parameters along with four biodegradation kinetic parameters were calibrated and validated separately with eight sets of batch experimental data and 60 days' PN reactor operational data. The developed model could accurately reproduce the dynamics of nitrogen and atenolol. The model prediction further revealed that atenolol biodegradation efficiencies by ammonia-oxidizing bacteria (AOB)-induced cometabolism, AOB-induced metabolism, and heterotrophic bacteria-induced biodegradation were 0, ∼ 60, and ∼35% in the absence of ammonium and FNA; ∼ 14, ∼ 29, and ∼28% at 0.03 mg-N L-1 FNA; and 7, 15, and 5% at 0.19 mg-N L-1 FNA. Model simulation showed that the nitritation efficiency of ∼99% and atenolol removal efficiency of 57.5% in the PN process could be achieved simultaneously by controlling pH at 8.5, while 89.2% total nitrogen and 57.1% atenolol were removed to the maximum at pH of 7.0 in PN coupling with the anammox process. The pH-based operational strategy to regulate FNA levels was mathematically demonstrated to be effective for achieving the simultaneous removal of nitrogen and atenolol in PN-based sidestream processes.
Collapse
Affiliation(s)
- Shi Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Ning Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Xi Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Chuanzhou Liang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Yan Zhou
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
2
|
Rios-Miguel AB, Jhm van Bergen T, Zillien C, Mj Ragas A, van Zelm R, Sm Jetten M, Jan Hendriks A, Welte CU. Predicting and improving the microbial removal of organic micropollutants during wastewater treatment: A review. CHEMOSPHERE 2023; 333:138908. [PMID: 37187378 DOI: 10.1016/j.chemosphere.2023.138908] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Organic micropollutants (OMPs) consist of widely used chemicals such as pharmaceuticals and pesticides that can persist in surface and groundwaters at low concentrations (ng/L to μg/L) for a long time. The presence of OMPs in water can disrupt aquatic ecosystems and threaten the quality of drinking water sources. Wastewater treatment plants (WWTPs) rely on microorganisms to remove major nutrients from water, but their effectiveness at removing OMPs varies. Low removal efficiency might be the result of low concentrations, inherent stable chemical structures of OMPs, or suboptimal conditions in WWTPs. In this review, we discuss these factors, with special emphasis on the ongoing adaptation of microorganisms to degrade OMPs. Finally, recommendations are drawn to improve the prediction of OMP removal in WWTPs and to optimize the design of new microbial treatment strategies. OMP removal seems to be concentration-, compound-, and process-dependent, which poses a great complexity to develop accurate prediction models and effective microbial processes targeting all OMPs.
Collapse
Affiliation(s)
- Ana B Rios-Miguel
- Department of Microbiology, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands.
| | - Tamara Jhm van Bergen
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands.
| | - Caterina Zillien
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - Ad Mj Ragas
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - Rosalie van Zelm
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - Mike Sm Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - A Jan Hendriks
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
3
|
Han P, Rios-Miguel AB, Tang X, Yu Y, Zhou LJ, Hou L, Liu M, Sun D, Jetten MSM, Welte CU, Men Y, Lücker S. Benzimidazole fungicide biotransformation by comammox Nitrospira bacteria: Transformation pathways and associated proteomic responses. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130558. [PMID: 36495641 DOI: 10.1016/j.jhazmat.2022.130558] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/23/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Benzimidazole fungicides are frequently detected in aquatic environments and pose a serious health risk. Here, we investigated the metabolic capacity of the recently discovered complete ammonia-oxidizing (comammox) Nitrospira inopinata and kreftii to transform a representative set of benzimidazole fungicides (i.e., benzimidazole, albendazole, carbendazim, fuberidazole, and thiabendazole). Ammonia-oxidizing bacteria and archaea, as well as the canonical nitrite-oxidizing Nitrospira exhibited no or minor biotransformation activity towards all the five benzimidazole fungicides. In contrast, the investigated comammox bacteria actively transformed all the five benzimidazole fungicides, except for thiabendazole. The identified transformation products indicated hydroxylation, S-oxidation, and glycosylation as the major biotransformation pathways of benzimidazole fungicides. We speculated that these reactions were catalyzed by comammox-specific ammonia monooxygenase, cytochrome P450 monooxygenases, and glycosylases, respectively. Interestingly, the exposure to albendazole enhanced the expression of the antibiotic resistance gene acrB of Nitrospira inopinata, suggesting that some benzimidazole fungicides could act as environmental stressors that trigger cellular defense mechanisms. Altogether, this study demonstrated the distinct substrate specificity of comammox bacteria towards benzimidazole fungicides and implies their significant roles in the biotransformation of these fungicides in nitrifying environments.
Collapse
Affiliation(s)
- Ping Han
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Institute of Eco-Chongming (IEC), 3663 North Zhongshan Road, Shanghai 200062, China.
| | - Ana B Rios-Miguel
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Xiufeng Tang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yaochun Yu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, United States; Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Li-Jun Zhou
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Institute of Eco-Chongming (IEC), 3663 North Zhongshan Road, Shanghai 200062, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Institute of Eco-Chongming (IEC), 3663 North Zhongshan Road, Shanghai 200062, China
| | - Dongyao Sun
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Mike S M Jetten
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Cornelia U Welte
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Yujie Men
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, United States; Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Sebastian Lücker
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| |
Collapse
|
4
|
Proteomic characterization of pilot scale hot-water extracts from the industrial carrageenan red seaweed Eucheuma denticulatum. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Bejarano Ortiz DI, Martínez Jardines MÁ, Cuervo López FDM, Texier AC. Biological ammonium and sulfide oxidation in a nitrifying sequencing batch reactor: Kinetic and microbial population dynamics assessments. CHEMOSPHERE 2020; 253:126637. [PMID: 32278910 DOI: 10.1016/j.chemosphere.2020.126637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
A kinetic study was carried out in a sequencing batch reactor (SBR) (125 mg NH4+-N/L) inoculated with a physiologically stable nitrifying sludge not previously acclimated to sulfur compounds and fed at different initial sulfide concentrations (2.5-20.0 mg HS--S/L). Up to 10.0 mg HS--S/L, the nitrifying process kept stable and complete, reaching an ammonium consumption efficiency (ENH4+) of 100% and a nitrate yield (YNO3-) of 0.95 ± 0.03 mg NO3--N/mg NH4+-N consumed. At 15.0 and 20.0 mg HS--S/L, after an initial alteration in the nitrite oxidizing process, the YNO2- was decreasing throughout the cycles and the YNO3- increasing, obtaining in the last cycle at 20.0 mg HS--S/L, an ENH4+ of 100%, a YNO2- of zero, and a YNO3- of 0.80 mg NO3--N/mg NH4+-N consumed. At the end of the period at 20.0 mg HS--S/L, the specific rates of ammonium consumption and nitrate formation were 15 and 55% lower than their respective values in the control period without sulfide addition, showing that the sludge had a better metabolic adaptation for ammonium oxidizing activity than for nitrite oxidizing activity. The sludge acquired a higher sulfide oxidation capacity along the cycles. Bacterial population dynamics assessment indicated that the ammonium oxidizing bacteria (AOB) community was more diverse and stable than the nitrite oxidizing bacteria (NOB) community. The use of consortia with a previously stabilized nitrifying activity in SBR may constitute an alternative for eliminating simultaneously ammonium by nitrification and sulfide by sulfide oxidation and be implemented for the treatment of wastewater with ammonium and sulfide.
Collapse
Affiliation(s)
- Diego Iván Bejarano Ortiz
- Universidad Autónoma Metropolitana-Iztapalapa, Depto. Biotecnología-CBS, Av. San Rafael Atlixco No 186, Col. Vicentina, C.P. 09340, Ciudad de México, Mexico
| | - Miguel Ángel Martínez Jardines
- Universidad Autónoma Metropolitana-Iztapalapa, Depto. Biotecnología-CBS, Av. San Rafael Atlixco No 186, Col. Vicentina, C.P. 09340, Ciudad de México, Mexico
| | - Flor de María Cuervo López
- Universidad Autónoma Metropolitana-Iztapalapa, Depto. Biotecnología-CBS, Av. San Rafael Atlixco No 186, Col. Vicentina, C.P. 09340, Ciudad de México, Mexico
| | - Anne-Claire Texier
- Universidad Autónoma Metropolitana-Iztapalapa, Depto. Biotecnología-CBS, Av. San Rafael Atlixco No 186, Col. Vicentina, C.P. 09340, Ciudad de México, Mexico.
| |
Collapse
|
6
|
García-Moreno PJ, Gregersen S, Nedamani ER, Olsen TH, Marcatili P, Overgaard MT, Andersen ML, Hansen EB, Jacobsen C. Identification of emulsifier potato peptides by bioinformatics: application to omega-3 delivery emulsions and release from potato industry side streams. Sci Rep 2020; 10:690. [PMID: 31959786 PMCID: PMC6971092 DOI: 10.1038/s41598-019-57229-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/20/2019] [Indexed: 11/08/2022] Open
Abstract
In this work, we developed a novel approach combining bioinformatics, testing of functionality and bottom-up proteomics to obtain peptide emulsifiers from potato side-streams. This is a significant advancement in the process to obtain emulsifier peptides and it is applicable to any type of protein. Our results indicated that structure at the interface is the major determining factor of the emulsifying activity of peptide emulsifiers. Fish oil-in-water emulsions with high physical stability were stabilized with peptides to be predicted to have facial amphiphilicity: (i) peptides with predominantly α-helix conformation at the interface and having 18-29 amino acids, and (ii) peptides with predominantly β-strand conformation at the interface and having 13-15 amino acids. In addition, high physically stable emulsions were obtained with peptides that were predicted to have axial hydrophobic/hydrophilic regions. Peptides containing the sequence FCLKVGV showed high in vitro antioxidant activity and led to emulsions with high oxidative stability. Peptide-level proteomics data and sequence analysis revealed the feasibility to obtain the potent emulsifier peptides found in this study (e.g. γ-1) by trypsin-based hydrolysis of different side streams in the potato industry.
Collapse
Affiliation(s)
- Pedro J García-Moreno
- National Food Institute, Technical University of Denmark, Copenhagen, Denmark.
- Department of Chemical Engineering, University of Granada, Granada, Spain.
| | - Simon Gregersen
- Department of Chemistry and Bioscience, Aalborg University, Copenhagen, Denmark
| | - Elham R Nedamani
- National Food Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Tobias H Olsen
- Department of Bio and Health Informatics, Technical University of Denmark, Copenhagen, Denmark
| | - Paolo Marcatili
- Department of Bio and Health Informatics, Technical University of Denmark, Copenhagen, Denmark
| | - Michael T Overgaard
- Department of Chemistry and Bioscience, Aalborg University, Copenhagen, Denmark
| | - Mogens L Andersen
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Egon B Hansen
- National Food Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, Copenhagen, Denmark
| |
Collapse
|
7
|
Han P, Yu Y, Zhou L, Tian Z, Li Z, Hou L, Liu M, Wu Q, Wagner M, Men Y. Specific Micropollutant Biotransformation Pattern by the Comammox Bacterium Nitrospira inopinata. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8695-8705. [PMID: 31294971 DOI: 10.1021/acs.est.9b01037] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The recently discovered complete ammonia-oxidizing (comammox) bacteria occur in various environments, including wastewater treatment plants. To better understand their role in micropollutant biotransformation in comparison with ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), we investigated the biotransformation capability of Nitrospira inopinata (the only comammox isolate) for 17 micropollutants. Asulam, fenhexamid, mianserin, and ranitidine were biotransformed by N. inopinata, Nitrososphaera gargensis (AOA), and Nitrosomonas nitrosa Nm90 (AOB). More distinctively, carbendazim, a benzimidazole fungicide, was exclusively biotransformed by N. inopinata. The biotransformation of carbendazim only occurred when N. inopinata was supplied with ammonia but not nitrite as the energy source. The exclusive biotransformation of carbendazim by N. inopinata was likely enabled by an enhanced substrate promiscuity of its unique AMO and its much higher substrate (for ammonia) affinity compared with the other two ammonia oxidizers. One major plausible transformation product (TP) of carbendazim is a hydroxylated form at the aromatic ring, which is consistent with the function of AMO. These findings provide fundamental knowledge on the micropollutant degradation potential of a comammox bacterium to better understand the fate of micropollutants in nitrifying environments.
Collapse
Affiliation(s)
- Ping Han
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology , University of Vienna , Althanstrasse 14 , 1090 Vienna , Austria
| | - Yaochun Yu
- Department of Civil and Environmental Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Lijun Zhou
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology , University of Vienna , Althanstrasse 14 , 1090 Vienna , Austria
- State Key Laboratory of Lake Science and Environment , Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences , Nanjing 210008 , China
| | - Zhenyu Tian
- Center for Urban Waters , University of Washington Tacoma , Tacoma , Washington 98421 , United States
| | - Zhong Li
- Metabolomics Center , University of Illinois , Urbana , Illinois 61801 , United States
| | | | | | - Qinglong Wu
- State Key Laboratory of Lake Science and Environment , Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences , Nanjing 210008 , China
- Sino-Danish Center for Education and Science , University of Chinese Academy of Science , Beijing 100190 , China
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology , University of Vienna , Althanstrasse 14 , 1090 Vienna , Austria
- The Comammox Research Platform of the University of Vienna , 1090 Vienna , Austria
- Department of Biotechnology, Chemistry and Bioscience , Aalborg University , 9100 Aalborg , Denmark
| | - Yujie Men
- Department of Civil and Environmental Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Institute for Genomic Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|
8
|
Salas-Cortés JA, Cuervo-López FDM, Texier AC. Simultaneous oxidation of ammonium and cresol isomers in a sequencing batch reactor: physiological and kinetic study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:25667-25675. [PMID: 26894615 DOI: 10.1007/s11356-016-6293-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/14/2016] [Indexed: 06/05/2023]
Abstract
The aim of this study was to evaluate the physiological and kinetic capacities of a nitrifying consortium to simultaneously oxidize ammonium (138 mg N/L day), m-cresol, o-cresol, and p-cresol (180 mg C/L day in mixture) in a sequencing batch reactor (SBR). A 1-L SBR was firstly operated without cresol addition (phase I) for stabilizing the nitrification respiratory process with ammonium consumption efficiencies close to 100 % and obtaining nitrate as the main end product. When cresols were added (phase II m-cresol (10, 20, and 30 mg C/L); phase III m-cresol (30 mg C/L) and o-cresol (10, 20, and 30 mg C/L); phase IV a mixture of three isomers (30 mg C/L each one)), inhibitory effects were evidenced by decreased values of the specific rates of nitrification compared with values from phase I. However, the inhibition diminished throughout the operation cycles, and the overall nitrifying physiological activity of the sludge was not altered in terms of efficiency and nitrate yield. The different cresols were totally consumed, being o-cresol the most recalcitrant. The use of SBR allowed a metabolic adaptation of the consortium to oxidize the cresols as the specific rates of consumption increased throughout the cycles, showing that this type of reactor can be a good alternative for treating industrial effluents in a unique reactor.
Collapse
Affiliation(s)
- Juan Antonio Salas-Cortés
- Departamento de Biotecnología, División CBS, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, C.P. 09340, México, D.F., Mexico
| | - Flor de María Cuervo-López
- Departamento de Biotecnología, División CBS, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, C.P. 09340, México, D.F., Mexico
| | - Anne-Claire Texier
- Departamento de Biotecnología, División CBS, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, C.P. 09340, México, D.F., Mexico.
| |
Collapse
|
9
|
Men Y, Achermann S, Helbling DE, Johnson DR, Fenner K. Relative contribution of ammonia oxidizing bacteria and other members of nitrifying activated sludge communities to micropollutant biotransformation. WATER RESEARCH 2017; 109:217-226. [PMID: 27898334 DOI: 10.1016/j.watres.2016.11.048] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/17/2016] [Accepted: 11/20/2016] [Indexed: 05/27/2023]
Abstract
Improved micropollutant (MP) biotransformation during biological wastewater treatment has been associated with high ammonia oxidation activities, suggesting co-metabolic biotransformation by ammonia oxidizing bacteria as an underlying mechanism. The goal of this study was to clarify the contribution of ammonia oxidizing bacteria to increased MP degradation in nitrifying activated sludge (NAS) communities using a series of inhibition experiments. To this end, we treated a NAS community with two different ammonia oxidation inhibitors, namely octyne (OCT), a mechanistic inhibitor that covalently binds to ammonia monooxygenases, and allylthiourea (ATU), a copper chelator that depletes copper ions from the active center of ammonia monooxygenases. We investigated the biotransformation of 79 structurally different MPs by the inhibitor-treated and untreated sludge communities. Fifty-five compounds exhibited over 20% removal in the untreated control after a 46 h-incubation. Of these, 31 compounds were significantly inhibited by either ATU and/or OCT. For 17 of the 31 MPs, the inhibition by ATU at 46 h was substantially higher than by OCT despite the full inhibition of ammonia oxidation by both inhibitors. This was particularly the case for almost all thioether and phenylurea compounds tested, suggesting that in nitrifying activated sludge communities, ATU does not exclusively act as an inhibitor of bacterial ammonia oxidation. Rather, ATU also inhibited enzymes contributing to MP biotransformation but not to bulk ammonia oxidation. Thus, inhibition studies with ATU tend to overestimate the contribution of ammonia-oxidizing bacteria to MP biotransformation in nitrifying activated sludge communities. Biolog tests revealed only minor effects of ATU on the heterotrophic respiration of common organic substrates by the sludge community, suggesting that ATU did not affect enzymes that were essential in energy conservation and central metabolism of heterotrophs. By comparing ATU- and OCT-treated samples, as well as before and after ammonia oxidation was recovered in OCT-treated samples, we were able to demonstrate that ammonia-oxidizing bacteria were highly involved in the biotransformation of four compounds: asulam, clomazone, monuron and trimethoprim.
Collapse
Affiliation(s)
- Yujie Men
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Stefan Achermann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - David R Johnson
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Kathrin Fenner
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
10
|
Mosbæk F, Kjeldal H, Mulat DG, Albertsen M, Ward AJ, Feilberg A, Nielsen JL. Identification of syntrophic acetate-oxidizing bacteria in anaerobic digesters by combined protein-based stable isotope probing and metagenomics. THE ISME JOURNAL 2016; 10:2405-18. [PMID: 27128991 PMCID: PMC5030692 DOI: 10.1038/ismej.2016.39] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/22/2016] [Accepted: 02/02/2016] [Indexed: 12/31/2022]
Abstract
Inhibition of anaerobic digestion through accumulation of volatile fatty acids occasionally occurs as the result of unbalanced growth between acidogenic bacteria and methanogens. A fast recovery is a prerequisite for establishing an economical production of biogas. However, very little is known about the microorganisms facilitating this recovery. In this study, we investigated the organisms involved by a novel approach of mapping protein-stable isotope probing (protein-SIP) onto a binned metagenome. Under simulation of acetate accumulation conditions, formations of (13)C-labeled CO2 and CH4 were detected immediately following incubation with [U-(13)C]acetate, indicating high turnover rate of acetate. The identified (13)C-labeled peptides were mapped onto a binned metagenome for improved identification of the organisms involved. The results revealed that Methanosarcina and Methanoculleus were actively involved in acetate turnover, as were five subspecies of Clostridia. The acetate-consuming organisms affiliating with Clostridia all contained the FTFHS gene for formyltetrahydrofolate synthetase, a key enzyme for reductive acetogenesis, indicating that these organisms are possible syntrophic acetate-oxidizing (SAO) bacteria that can facilitate acetate consumption via SAO, coupled with hydrogenotrophic methanogenesis (SAO-HM). This study represents the first study applying protein-SIP for analysis of complex biogas samples, a promising method for identifying key microorganisms utilizing specific pathways.
Collapse
Affiliation(s)
- Freya Mosbæk
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Henrik Kjeldal
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Daniel G Mulat
- Department of Engineering, Aarhus University, Aarhus, Denmark
| | - Mads Albertsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Alastair J Ward
- Department of Engineering, Aarhus University, Aarhus, Denmark
| | - Anders Feilberg
- Department of Engineering, Aarhus University, Aarhus, Denmark
| | - Jeppe L Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
11
|
Men Y, Han P, Helbling DE, Jehmlich N, Herbold C, Gulde R, Onnis-Hayden A, Gu AZ, Johnson DR, Wagner M, Fenner K. Biotransformation of Two Pharmaceuticals by the Ammonia-Oxidizing Archaeon Nitrososphaera gargensis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:4682-92. [PMID: 27046099 PMCID: PMC4981450 DOI: 10.1021/acs.est.5b06016] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/25/2016] [Accepted: 04/05/2016] [Indexed: 05/20/2023]
Abstract
The biotransformation of some micropollutants has previously been observed to be positively associated with ammonia oxidation activities and the transcript abundance of the archaeal ammonia monooxygenase gene (amoA) in nitrifying activated sludge. Given the increasing interest in and potential importance of ammonia-oxidizing archaea (AOA), we investigated the capabilities of an AOA pure culture, Nitrososphaera gargensis, to biotransform ten micropollutants belonging to three structurally similar groups (i.e., phenylureas, tertiary amides, and tertiary amines). N. gargensis was able to biotransform two of the tertiary amines, mianserin (MIA) and ranitidine (RAN), exhibiting similar compound specificity as two ammonia-oxidizing bacteria (AOB) strains that were tested for comparison. The same MIA and RAN biotransformation reactions were carried out by both the AOA and AOB strains. The major transformation product (TP) of MIA, α-oxo MIA was likely formed via a two-step oxidation reaction. The first hydroxylation step is typically catalyzed by monooxygenases. Three RAN TP candidates were identified from nontarget analysis. Their tentative structures and possible biotransformation pathways were proposed. The biotransformation of MIA and RAN only occurred when ammonia oxidation was active, suggesting cometabolic transformations. Consistently, a comparative proteomic analysis revealed no significant differential expression of any protein-encoding gene in N. gargensis grown on ammonium with MIA or RAN compared with standard cultivation on ammonium only. Taken together, this study provides first important insights regarding the roles played by AOA in micropollutant biotransformation.
Collapse
Affiliation(s)
- Yujie Men
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Department
of Civil and Environmental Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Yujie Men. Address: 3209 Newmark
Civil Engineering Laboratory, MC-250 205 North Mathews Ave., Urbana,
IL 61801-2352, USA. . Phone: (217) 244-8259
| | - Ping Han
- Department
of Microbiology and Ecosystem Science, Division of Microbial Ecology,
Research Network “Chemistry meets Microbiology”, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Damian E. Helbling
- School
of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Nico Jehmlich
- Department
of Proteomics, Helmholtz-Centre for Environmental
Research − UFZ, 04318 Leipzig, Germany
| | - Craig Herbold
- Department
of Microbiology and Ecosystem Science, Division of Microbial Ecology,
Research Network “Chemistry meets Microbiology”, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Rebekka Gulde
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Annalisa Onnis-Hayden
- Department
of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - April Z. Gu
- Department
of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - David R. Johnson
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Michael Wagner
- Department
of Microbiology and Ecosystem Science, Division of Microbial Ecology,
Research Network “Chemistry meets Microbiology”, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Kathrin Fenner
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Department
of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
12
|
Kjeldal H, Zhou NA, Wissenbach DK, von Bergen M, Gough HL, Nielsen JL. Genomic, Proteomic, and Metabolite Characterization of Gemfibrozil-Degrading Organism Bacillus sp. GeD10. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:744-755. [PMID: 26683816 DOI: 10.1021/acs.est.5b05003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Gemfibrozil is a widely used hypolipidemic and triglyceride lowering drug. Excess of the drug is excreted and discharged into the environment primarily via wastewater treatment plant effluents. Bacillus sp. GeD10, a gemfibrozil-degrader, was previously isolated from activated sludge. It is the first identified bacterium capable of degrading gemfibrozil. Gemfibrozil degradation by Bacillus sp. GeD10 was here studied through genome sequencing, quantitative proteomics and metabolite analysis. From the bacterial proteome of Bacillus sp. GeD10 1974 proteins were quantified, of which 284 proteins were found to be overabundant by more than 2-fold (FDR corrected p-value ≤0.032, fold change (log2) ≥ 1) in response to gemfibrozil exposure. Metabolomic analysis identified two hydroxylated intermediates as well as a glucuronidated hydroxyl-metabolite of gemfibrozil. Overall, gemfibrozil exposure in Bacillus sp. GeD10 increased the abundance of several enzymes potentially involved in gemfibrozil degradation as well as resulted in the production of several gemfibrozil metabolites. The potential catabolic pathway/modification included ring-hydroxylation preparing the substrate for subsequent ring cleavage by a meta-cleaving enzyme. The identified genes may allow for monitoring of potential gemfibrozil-degrading organisms in situ and increase the understanding of microbial processing of trace level contaminants. This study represents the first omics study on a gemfibrozil-degrading bacterium.
Collapse
Affiliation(s)
- Henrik Kjeldal
- Aalborg University , Department of Chemistry and Bioscience; Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Nicolette A Zhou
- Aalborg University , Department of Chemistry and Bioscience; Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
- University of Washington , Department of Civil and Environmental Engineering; More Hall 201 Box 352700, Seattle, Washington 98195-2700, United States
| | | | - Martin von Bergen
- Aalborg University , Department of Chemistry and Bioscience; Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig , Leipzig, Germany
| | - Heidi L Gough
- University of Washington , Department of Civil and Environmental Engineering; More Hall 201 Box 352700, Seattle, Washington 98195-2700, United States
| | - Jeppe L Nielsen
- Aalborg University , Department of Chemistry and Bioscience; Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| |
Collapse
|
13
|
Kristensen TN, Kjeldal H, Schou MF, Nielsen JL. Proteomic data reveals a physiological basis for costs and benefits associated with thermal acclimation. J Exp Biol 2016; 219:969-76. [DOI: 10.1242/jeb.132696] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/15/2016] [Indexed: 01/13/2023]
Abstract
Physiological adaptation through acclimation is one way to cope with temperature changes. Biochemical studies on acclimation responses in ectotherms have so far mainly investigated consequences of short-term acclimation at the adult stage and focussed on adaptive responses. Here we assessed the consequences of developmental and adult rearing at low (12°C), benign (25°C) and high (31°C) temperatures in Drosophila melanogaster. We assessed cold and heat tolerance and obtained detailed proteomic profiles of flies from the three temperatures. The proteomic profiles provided a holistic understanding of the underlying biology associated with both adaptive and non-adaptive temperature responses. Results show strong benefits and costs across tolerances: rearing at low temperature increased adult cold tolerance and decreased adult heat tolerance and vice versa with development at high temperatures. In the proteomic analysis we were able to identify and quantify a large number of proteins compared to previous studies on ectotherms (1440 proteins across all replicates and rearing regimes), enabling us to extend the proteomic approach using enrichment analyses. This gave us both detailed information on individual proteins as well as pathways affected by rearing temperature, pinpointing mechanisms likely responsible for the strong costs and benefits of rearing temperature on functional phenotypes. Several well-known heat shock proteins as well as proteins not previously associated with thermal stress were among the differentially expressed proteins. Upregulation of proteasome proteins was found to be an important adaptive process at high stressful rearing temperatures, and occurs at the expense of downregulation of basal metabolic functions.
Collapse
Affiliation(s)
- Torsten N. Kristensen
- Department of Chemistry and Bioscience, Aalborg University, DK-9220 Aalborg E, Denmark
| | - Henrik Kjeldal
- Department of Chemistry and Bioscience, Aalborg University, DK-9220 Aalborg E, Denmark
| | - Mads F. Schou
- Department of Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, DK-9220 Aalborg E, Denmark
| |
Collapse
|
14
|
Zhou NA, Kjeldal H, Gough HL, Nielsen JL. Identification of Putative Genes Involved in Bisphenol A Degradation Using Differential Protein Abundance Analysis of Sphingobium sp. BiD32. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:12232-41. [PMID: 26390302 DOI: 10.1021/acs.est.5b02987] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Discharge of the endocrine disrupting compound bisphenol A (BPA) with wastewater treatment plant (WWTP) effluents into surface waters results in deleterious effects on aquatic life. Sphingobium sp. BiD32 was previously isolated from activated sludge based on its ability to degrade BPA. This study investigated BPA metabolism by Sphingobium sp. BiD32 using label-free quantitative proteomics. The genome of Sphingobium sp. BiD32 was sequenced to provide a species-specific platform for optimal protein identification. The bacterial proteomes of Sphingobium sp. BiD32 in the presence and absence of BPA were identified and quantified. A total of 2155 proteins were identified; 1174 of these proteins were quantified, and 184 of these proteins had a statistically significant change in abundance in response to the presence/absence of BPA (p ≤ 0.05). Proteins encoded by genes previously identified to be responsible for protocatechuate degradation were upregulated in the presence of BPA. The analysis of the metabolites from BPA degradation by Sphingobium sp. BiD32 detected a hydroxylated metabolite. A novel p-hydroxybenzoate hydroxylase enzyme detected by proteomics was implicated in the metabolic pathway associated with the detected metabolite. This enzyme is hypothesized to be involved in BPA degradation by Sphingobium sp. BiD32, and may serve as a future genetic marker for BPA degradation.
Collapse
Affiliation(s)
- Nicolette A Zhou
- Department of Chemistry and Bioscience, Aalborg University , Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
- Department of Civil and Environmental Engineering, University of Washington , More Hall 201 Box 352700, Seattle, Washington 98195-2700, United States
| | - Henrik Kjeldal
- Department of Chemistry and Bioscience, Aalborg University , Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Heidi L Gough
- Department of Civil and Environmental Engineering, University of Washington , More Hall 201 Box 352700, Seattle, Washington 98195-2700, United States
| | - Jeppe L Nielsen
- Department of Chemistry and Bioscience, Aalborg University , Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| |
Collapse
|