1
|
Tsaplina O. The Balance between Protealysin and Its Substrate, the Outer Membrane Protein OmpX, Regulates Serratia proteamaculans Invasion. Int J Mol Sci 2024; 25:6159. [PMID: 38892348 PMCID: PMC11172720 DOI: 10.3390/ijms25116159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Serratia are opportunistic bacteria, causing infections in plants, insects, animals and humans under certain conditions. The development of bacterial infection in the human body involves several stages of host-pathogen interaction, including entry into non-phagocytic cells to evade host immune cells. The facultative pathogen Serratia proteamaculans is capable of penetrating eukaryotic cells. These bacteria synthesize an actin-specific metalloprotease named protealysin. After transformation with a plasmid carrying the protealysin gene, noninvasive E. coli penetrate eukaryotic cells. This suggests that protealysin may play a key role in S. proteamaculans invasion. This review addresses the mechanisms underlying protealysin's involvement in bacterial invasion, highlighting the main findings as follows. Protealysin can be delivered into the eukaryotic cell by the type VI secretion system and/or by bacterial outer membrane vesicles. By cleaving actin in the host cell, protealysin can mediate the reversible actin rearrangements required for bacterial invasion. However, inactivation of the protealysin gene leads to an increase, rather than decrease, in the intensity of S. proteamaculans invasion. This indicates the presence of virulence factors among bacterial protealysin substrates. Indeed, protealysin cleaves the virulence factors, including the bacterial surface protein OmpX. OmpX increases the expression of the EGFR and β1 integrin, which are involved in S. proteamaculans invasion. It has been shown that an increase in the invasion of genetically modified S. proteamaculans may be the result of the accumulation of full-length OmpX on the bacterial surface, which is not cleaved by protealysin. Thus, the intensity of the S. proteamaculans invasion is determined by the balance between the active protealysin and its substrate OmpX.
Collapse
Affiliation(s)
- Olga Tsaplina
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av. 4, 194064 St. Petersburg, Russia
| |
Collapse
|
2
|
Tsaplina O, Lomert E, Berson Y. Host-Cell-Dependent Roles of E-Cadherin in Serratia Invasion. Int J Mol Sci 2023; 24:17075. [PMID: 38069398 PMCID: PMC10707018 DOI: 10.3390/ijms242317075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Bacteria use cell surface proteins to mediate host-pathogen interactions. Proteins responsible for cell adhesion, including E-cadherin, serve as receptors for entry into the host cell. We have previously shown that an increase in eukaryotic cell sensitivity to Serratia grimesii correlates with an increase in E-cadherin expression. On the other hand, Serratia proteamaculans invasion involves the EGFR, which can interact with E-cadherin on the surface of host cells. Therefore, we investigated the role of E-cadherin in Serratia invasion into M-HeLa and Caco-2 cells. Bacterial infection increased E-cadherin expression in both cell lines. Moreover, E-cadherin was detected in the Caco-2 cells in a full-length form and in the M-HeLa cells in only a truncated form in response to incubation with bacteria. Transfection with siRNA targeting E-cadherin inhibited S. proteamaculans invasion only into the Caco-2 cells. Thus, only full-length E-cadherin is involved in S. proteamaculans invasion. On the other hand, transfection with siRNA targeting E-cadherin inhibited S. grimesii invasion into both cell lines. Thus, not only may full-length E-cadherin but also truncated E-cadherin be involved in S. grimesii invasion. Truncated E-cadherin can be formed as a result of cleavage by bacterial proteases or the Ca2+-activated cellular protease ADAM10. The rate of Ca2+ accumulation in the host cells depends on the number of bacteria per cell upon infection. During incubation, Ca2+ accumulates only when more than 500 S. grimesii bacteria are infected per eukaryotic cell, and only under these conditions does the ADAM10 inhibitor reduce the sensitivity of the cells to bacteria. An EGFR inhibitor has the same quantitative effect on S. grimesii invasion. Apparently, as a result of infection with S. grimesii, Ca2+ accumulates in the host cells and may activate the ADAM10 sheddase, which can promote invasion by cleaving E-cadherin and, as a result, triggering EGFR signaling. Thus, the invasion of S. proteamaculans can only be promoted by full-length E-cadherin, and S. grimesii invasion can be promoted by both full-length and truncated E-cadherin.
Collapse
Affiliation(s)
- Olga Tsaplina
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av. 4, 194064 St Petersburg, Russia; (E.L.); (Y.B.)
| | | | | |
Collapse
|
3
|
Berson Y, Khaitlina S, Tsaplina O. Involvement of Lipid Rafts in the Invasion of Opportunistic Bacteria Serratia into Eukaryotic Cells. Int J Mol Sci 2023; 24:ijms24109029. [PMID: 37240375 PMCID: PMC10361209 DOI: 10.3390/ijms24109029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Cell membrane rafts form signaling platforms on the cell surface, controlling numerous protein-protein and lipid-protein interactions. Bacteria invading eukaryotic cells trigger cell signaling to induce their own uptake by non-phagocytic cells. The aim of this work was to reveal the involvement of membrane rafts in the penetration of the bacteria Serratia grimesii and Serratia proteamaculans into eukaryotic cells. Our results show that the disruption of membrane rafts by MβCD in the three cell lines tested, M-HeLa, MCF-7 and Caco-2, resulted in a time-dependent decrease in the intensity of Serratia invasion. MβCD treatment produced a more rapid effect on the bacterial susceptibility of M-HeLa cells compared to other cell lines. This effect correlated with a faster assembly of the actin cytoskeleton upon treatment with MβCD in M-HeLa cells in contrast to that in Caco-2 cells. Moreover, the 30 min treatment of Caco-2 cells with MβCD produced an increase in the intensity of S. proteamaculans invasion. This effect correlated with an increase in EGFR expression. Together with the evidence that EGFR is involved in S. proteamaculans invasion but not in S. grimesii invasion, these results led to the conclusion that an increase in EGFR amount on the plasma membrane with the undisassembled rafts of Caco-2 cells after 30 min of treatment with MβCD may increase the intensity of S. proteamaculans but not of S. grimesii invasion. Thus, the MβCD-dependent degradation of lipid rafts, which enhances actin polymerization and disrupts signaling pathways from receptors on the host cell's surface, reduces Serratia invasion.
Collapse
Affiliation(s)
- Yuliya Berson
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av. 4, 194064 St. Petersburg, Russia
| | - Sofia Khaitlina
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av. 4, 194064 St. Petersburg, Russia
| | - Olga Tsaplina
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av. 4, 194064 St. Petersburg, Russia
| |
Collapse
|
4
|
Xiao Y, Yan F, Cui Y, Du J, Hu G, Zhai W, Liu R, Zhang Z, Fang J, Chen L, Yu X. A symbiotic bacterium of Antarctic fish reveals environmental adaptability mechanisms and biosynthetic potential towards antibacterial and cytotoxic activities. Front Microbiol 2023; 13:1085063. [PMID: 36713225 PMCID: PMC9882997 DOI: 10.3389/fmicb.2022.1085063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/14/2022] [Indexed: 01/15/2023] Open
Abstract
Antarctic microbes are important agents for evolutionary adaptation and natural resource of bioactive compounds, harboring the particular metabolic pathways to biosynthesize natural products. However, not much is known on symbiotic microbiomes of fish in the Antarctic zone. In the present study, the culture method and whole-genome sequencing were performed. Natural product analyses were carried out to determine the biosynthetic potential. We report the isolation and identification of a symbiotic bacterium Serratia myotis L7-1, that is highly adaptive and resides within Antarctic fish, Trematomus bernacchii. As revealed by genomic analyses, Antarctic strain S. myotis L7-1 possesses carbohydrate-active enzymes (CAZymes), biosynthetic gene clusters (BGCs), stress response genes, antibiotic resistant genes (ARGs), and a complete type IV secretion system which could facilitate competition and colonization in the extreme Antarctic environment. The identification of microbiome gene clusters indicates the biosynthetic potential of bioactive compounds. Based on bioactivity-guided fractionation, serranticin was purified and identified as the bioactive compound, showing significant antibacterial and antitumor activity. The serranticin gene cluster was identified and located on the chrome. Furthermore, the multidrug resistance and strong bacterial antagonism contribute competitive advantages in ecological niches. Our results highlight the existence of a symbiotic bacterium in Antarctic fish largely represented by bioactive natural products and the adaptability to survive in the fish living in Antarctic oceans.
Collapse
Affiliation(s)
- Yu Xiao
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Fangfang Yan
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Yukun Cui
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Jiangtao Du
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Guangzhao Hu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Wanying Zhai
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Rulong Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Zhizhen Zhang
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan, China
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China,*Correspondence: Liangbiao Chen, ✉
| | - Xi Yu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China,Xi Yu, ✉
| |
Collapse
|
5
|
Tsaplina O, Khmel I, Zaitseva Y, Khaitlina S. The Role of SprIR Quorum Sensing System in the Regulation of Serratia proteamaculans 94 Invasion. Microorganisms 2021; 9:microorganisms9102082. [PMID: 34683403 PMCID: PMC8537836 DOI: 10.3390/microorganisms9102082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 01/20/2023] Open
Abstract
The bacteria Serratia proteamaculans 94 have a LuxI/LuxR type QS system consisting of AHL synthase SprI and the regulatory receptor SprR. We have previously shown that inactivation of the AHL synthase sprI gene resulted in an increase in the invasive activity of S. proteamaculans correlated with an increased bacterial adhesion. In the present work, the effects of inactivation of the S. proteamaculans receptor SprR are studied. Our results show that inactivation of the receptor sprR gene leads to an increase in bacterial invasion without any increase in their adhesion. On the other hand, inactivation of the sprR gene increases the activity of the extracellular protease serralysin. Inactivation of the QS system does not affect the activity of the pore-forming toxin ShlA and prevents the ShlA activation under conditions of a limited concentration of iron ions typical of the human body. While the wild type strain shows increased invasion in the iron-depleted medium, deletion of its QS system leads to a decrease in host cell invasion, which is nevertheless similar to the level of the wild type S. proteamaculans grown in the iron-rich medium. Thus, inactivation of either of the two component of the S. proteamaculans LuxI/LuxR-type QS system leads to an increase in the invasive activity of these bacteria through different mechanisms and prevents invasion under the iron-limited conditions.
Collapse
Affiliation(s)
- Olga Tsaplina
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av. 4, 194064 St Petersburg, Russia;
- Correspondence: ; Tel.: +7-812-297-42-96
| | - Inessa Khmel
- Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov sq. 2, 123182 Moscow, Russia; (I.K.); (Y.Z.)
| | - Yulia Zaitseva
- Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov sq. 2, 123182 Moscow, Russia; (I.K.); (Y.Z.)
- Laboratory of Biotechnology and Applied Bioelementology, Demidov Yaroslavl State University, Sovetskaya Str. 14, 150003 Yaroslavl, Russia
| | - Sofia Khaitlina
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av. 4, 194064 St Petersburg, Russia;
| |
Collapse
|
6
|
Tsaplina O, Khmel I, Zaitseva Y, Khaitlina S. Invasion of Serratia proteamaculans is regulated by the sprI gene encoding AHL synthase. Microbes Infect 2021; 23:104852. [PMID: 34197907 DOI: 10.1016/j.micinf.2021.104852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/15/2021] [Accepted: 06/20/2021] [Indexed: 01/08/2023]
Abstract
Quorum Sensing (QS) system regulates gene expression in response to a change in the density of the bacterial population. Facultative pathogen Serratia proteamaculans 94 has a LuxI/LuxR type QS system consisting of regulatory protein SprR and AHL synthase SprI. Invasive activity of these bacteria appears at the stationary growth phase corresponding to a maximal density of the bacterial population in vitro. To evaluate the contribution of QS system of S. proteamaculans 94 to the regulation of invasive activity, in this work, S. proteamaculans SprI(-) mutant carrying the inactivated AHL synthase gene was used. Inactivation of the AHL synthase sprI gene resulted in a more than fourfold increase in the invasive activity of S. proteamaculans preceded by the increased adhesion of bacteria to the cell surface. This effect correlated with the increased expression of the outer membrane protein ompX gene and the decrease in the activity of intrabacterial protease protealysin, whose substrate is OmpX. The inverse correlation between activity of protealysin and bacterial invasion was also observed in the model experiments under the iron-limiting culture conditions. These results show that QS system regulates the S. proteamaculans invasion. This regulation can involve changes both in the protealysin activity and in the level of the ompX gene transcription.
Collapse
Affiliation(s)
| | - Inessa Khmel
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute", RAS, Moscow, Russia
| | - Yulia Zaitseva
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute", RAS, Moscow, Russia; Demidov Yaroslavl State University, Yaroslavl, Russia
| | | |
Collapse
|
7
|
Stella NA, Brothers KM, Shanks RMQ. Differential susceptibility of airway and ocular surface cell lines to FlhDC-mediated virulence factors PhlA and ShlA from Serratia marcescens. J Med Microbiol 2021; 70:001292. [PMID: 33300860 PMCID: PMC8131021 DOI: 10.1099/jmm.0.001292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/24/2020] [Indexed: 12/26/2022] Open
Abstract
Introduction. Serratia marcescens is a bacterial pathogen that causes ventilator-associated pneumonia and ocular infections. The FlhD and FlhC proteins complex to form a heteromeric transcription factor whose regulon, in S. marcescens, regulates genes for the production of flagellum, phospholipase A and the cytolysin ShlA. The previously identified mutation, scrp-31, resulted in highly elevated expression of the flhDC operon. The scrp-31 mutant was observed to be more cytotoxic to human airway and ocular surface epithelial cells than the wild-type bacteria and the present study sought to identify the mechanism underlying the increased cytotoxicity phenotype.Hypothesis/Gap Statement. Although FlhC and FlhD have been implicated as virulence determinants, the mechanisms by which these proteins regulate bacterial cytotoxicity to different cell types remains unclear.Aim. This study aimed to evaluate the mechanisms of FlhDC-mediated cytotoxicity to human epithelial cells by S. marcescens.Methodology. Wild-type and mutant bacteria and bacterial secretomes were used to challenge airway and ocular surface cell lines as evaluated by resazurin and calcein AM staining. Pathogenesis was further tested using a Galleria mellonella infection model.Results. The increased cytotoxicity of scrp-31 bacteria and secretomes to both cell lines was eliminated by mutation of flhD and shlA. Mutation of the flagellin gene had no impact on cytotoxicity under any tested condition. Elimination of the phospholipase gene, phlA, had no effect on bacteria-induced cytotoxicity to either cell line, but reduced cytotoxicity caused by secretomes to airway epithelial cells. Mutation of flhD and shlA, but not phlA, reduced bacterial killing of G. mellonella larvae.Conclusion. This study indicates that the S. marcescens FlhDC-regulated secreted proteins PhlA and ShlA, but not flagellin, are cytotoxic to airway and ocular surface cells and demonstrates differences in human epithelial cell susceptibility to PhlA.
Collapse
Affiliation(s)
- Nicholas A. Stella
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kimberly M. Brothers
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Robert M. Q. Shanks
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
8
|
Tsaplina O, Demidyuk I, Artamonova T, Khodorkovsky M, Khaitlina S. Cleavage of the outer membrane protein OmpX by protealysin regulates
Serratia proteamaculans
invasion. FEBS Lett 2020; 594:3095-3107. [DOI: 10.1002/1873-3468.13897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/18/2020] [Accepted: 06/21/2020] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Tatiana Artamonova
- Peter the Great St. Petersburg Polytechnic University Saint‐Petersburg Russia
| | | | | |
Collapse
|
9
|
Khaitlina S, Bozhokina E, Tsaplina O, Efremova T. Bacterial Actin-Specific Endoproteases Grimelysin and Protealysin as Virulence Factors Contributing to the Invasive Activities of Serratia. Int J Mol Sci 2020; 21:E4025. [PMID: 32512842 PMCID: PMC7311988 DOI: 10.3390/ijms21114025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 12/25/2022] Open
Abstract
The article reviews the discovery, properties and functional activities of new bacterial enzymes, proteases grimelysin (ECP 32) of Serratia grimesii and protealysin of Serratia proteamaculans, characterized by both a highly specific "actinase" activity and their ability to stimulate bacterial invasion. Grimelysin cleaves the only polypeptide bond Gly42-Val43 in actin. This bond is not cleaved by any other proteases and leads to a reversible loss of actin polymerization. Similar properties were characteristic for another bacterial protease, protealysin. These properties made grimelysin and protealysin a unique tool to study the functional properties of actin. Furthermore, bacteria Serratia grimesii and Serratia proteamaculans, producing grimelysin and protealysin, invade eukaryotic cells, and the recombinant Escherichia coli expressing the grimelysin or protealysins gene become invasive. Participation of the cellular c-Src and RhoA/ROCK signaling pathways in the invasion of eukaryotic cells by S. grimesii was shown, and involvement of E-cadherin in the invasion has been suggested. Moreover, membrane vesicles produced by S. grimesii were found to contain grimelysin, penetrate into eukaryotic cells and increase the invasion of bacteria into eukaryotic cells. These data indicate that the protease is a virulence factor, and actin can be a target for the protease upon its translocation into the host cell.
Collapse
Affiliation(s)
- Sofia Khaitlina
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (E.B.); (O.T.); (T.E.)
| | | | | | | |
Collapse
|
10
|
Karaseva MA, Chukhontseva KN, Lemeskina IS, Pridatchenko ML, Kostrov SV, Demidyuk IV. An Internally Quenched Fluorescent Peptide Substrate for Protealysin. Sci Rep 2019; 9:14352. [PMID: 31586119 PMCID: PMC6778150 DOI: 10.1038/s41598-019-50764-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022] Open
Abstract
Protealysin, a metalloprotease of Serratia proteamaculans, is the prototype of a subgroup of the M4 peptidase family. Protealysin-like proteases (PLPs) are widely spread in bacteria but also occur in fungi and certain archaea. The interest in PLPs is primarily due to their putative involvement in the bacterial pathogenesis in animals and plants. Studying PLPs requires an efficient quantitative assay for their activity; however, no such assay has been reported so far. Here, we used the autoprocessing site sequence of the protealysin precursor to construct an internally quenched fluorescent peptide substrate 2-aminobenzoyl-L-arginyl-L-seryl-L-valyl-L-isoleucyl-L-(ε-2,4-dinitrophenyl)lysine. Protealysin and thermolysin, the prototype of the M4 family, proved to hydrolyze only the Ser-Val bond of the substrate. The substrate exhibited a KM = 35 ± 4 μM and kcat = 21 ± 1 s−1 for protealysin as well as a KM = 33 ± 8 μM and kcat = 7 ± 1 s−1 for thermolysin at 37 °C. Comparison of the effect of different enzymes (thermolysin, trypsin, chymotrypsin, savinase, and pronase E) on the substrate has demonstrated that it is not strictly specific for protealysin; however, this enzyme has higher molar activity even compared to the closely related thermolysin. Thus, the proposed substrate can be advantageous for quantitative studies of protealysin as well as for activity assays of other M4 peptidases.
Collapse
Affiliation(s)
- Maria A Karaseva
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | | | - Irina S Lemeskina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Marina L Pridatchenko
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Sergey V Kostrov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ilya V Demidyuk
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
11
|
Giliazeva AG, Shagimardanova EI, Shigapova LH, Pudova DS, Sharipova MR, Mardanova AM. Draft genome sequence and analysis of Klebsiella oxytoca strain NK-1 isolated from ureteral stent. Data Brief 2019; 24:103853. [PMID: 31011596 PMCID: PMC6463764 DOI: 10.1016/j.dib.2019.103853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 11/24/2022] Open
Abstract
Klebsiella oxytoca is a facultative aerobic, gram-negative, rod-shaped bacterium capable of causing nosocomial infections, in particular catheter-associated urinary tract infections (CAUTIs). Data on the possible roles of uncommon pathogens such as K. oxytoca in the pathogenesis of biofilm-associated infections such as CAUTIs have been already reported. Herein, we describe the draft genome sequence of K. oxytoca strain NK-1 isolated from the surface of ureteral stent retrieved from a Russian female. The genome comprises 6,232,464 bp, with a G + C content of 55.60% and an L50 of 7. A total of 6246 putative protein-encoding genes were predicted, including considerable number of genes responsible for adhesion, invasion, drug resistance, iron acquisition and other genes relevant for virulence. The NK-1 strain was ascribed a sequence type (ST) as ST 216 (4, 6, 19, 10, 46, 24, 31). Data comparison of the recA gene sequences confirmed that the strain belongs to the species K. oxytoca. Minimal inhibitory concentration of different antibiotics have been determined. This whole genome shotgun project has been deposited at DDBJ/ENA/GenBank under the accession number QPKC00000000.1.
Collapse
|
12
|
Zymography in Multiwells for Quality Assessment of Proteinases. Methods Mol Biol 2017. [PMID: 28608215 DOI: 10.1007/978-1-4939-7111-4_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Zymography is a well-standardized protocol for the qualitative assessment and analysis of proteinases under specified conditions. However, analysis of a large number of samples simultaneously becomes a challenge when the zymography is carried out by the usual protocol of electrophoresis. This can be overcome by assaying the matrix-degrading proteinases in substrate-impregnated gels in multiwells. Enzymes are copolymerized with 300 mL of 10% acrylamide impregnated with gelatin substrate and incubated for 16 h. The gels are then stained with Coomassie blue, destained with water, and visualized with the naked eye. The intensity; if needed can be measured with a densitometer or gel documentation system. This method has been tested for bacterial collagenases as well as some matrix-degrading metalloproteinases that were purified from rat mammary gland. It can also be used to characterize the enzymes with respect to the type and concentration of the cations required for activity and the role of other regulatory molecules that may affect the enzyme activity. The added advantage of this method is that the electrophoresis set up and electricity is not needed for the procedure.
Collapse
|