1
|
Korlević M, Markovski M, Zhao Z, Herndl GJ, Najdek M. Seasonal Dynamics of Epiphytic Microbial Communities on Marine Macrophyte Surfaces. Front Microbiol 2021; 12:671342. [PMID: 34603223 PMCID: PMC8482799 DOI: 10.3389/fmicb.2021.671342] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
Surfaces of marine macrophytes are inhabited by diverse microbial communities. Most studies focusing on epiphytic communities of macrophytes did not take into account temporal changes or applied low sampling frequency approaches. The seasonal dynamics of epiphytic microbial communities was determined in a meadow of Cymodocea nodosa invaded by Caulerpa cylindracea and in a monospecific settlement of C. cylindracea at monthly intervals. For comparison the ambient prokaryotic picoplankton community was also characterized. At the OTU level, the microbial community composition differed between the ambient water and the epiphytic communities exhibiting host-specificity. Also, successional changes were observed connected to the macrophyte growth cycle. Taxonomic analysis, however, showed similar high rank taxa (phyla and classes) in the ambient water and the epiphytic communities, with the exception of Desulfobacterota, which were only found on C. cylindracea. Cyanobacteria showed seasonal changes while other high rank taxa were present throughout the year. In months of high Cyanobacteria presence the majority of cyanobacterial sequences were classified as Pleurocapsa. Phylogenetic groups present throughout the year (e.g., Saprospiraceae, Rhodobacteraceae, members without known relatives within Gammaproteobacteria, Desulfatitalea, and members without known relatives within Desulfocapsaceae) constituted most of the sequences, while less abundant taxa showed seasonal patterns connected to the macrophyte growth cycle. Taken together, epiphytic microbial communities of the seagrass C. nodosa and the macroalga C. cylindracea appear to be host-specific and contain taxa that undergo successional changes.
Collapse
Affiliation(s)
- Marino Korlević
- Center for Marine Research, Ruđer Bošković Institute, Rovinj, Croatia
| | - Marsej Markovski
- Center for Marine Research, Ruđer Bošković Institute, Rovinj, Croatia
| | - Zihao Zhao
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Gerhard J Herndl
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.,Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Utrecht University, Den Burg, Netherlands
| | - Mirjana Najdek
- Center for Marine Research, Ruđer Bošković Institute, Rovinj, Croatia
| |
Collapse
|
2
|
Thompson AW, Ward AC, Sweeney CP, Sutherland KR. Host-specific symbioses and the microbial prey of a pelagic tunicate (Pyrosoma atlanticum). ISME COMMUNICATIONS 2021; 1:11. [PMID: 36721065 PMCID: PMC9723572 DOI: 10.1038/s43705-021-00007-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/12/2021] [Accepted: 02/24/2021] [Indexed: 02/03/2023]
Abstract
Pyrosomes are widely distributed pelagic tunicates that have the potential to reshape marine food webs when they bloom. However, their grazing preferences and interactions with the background microbial community are poorly understood. This is the first study of the marine microorganisms associated with pyrosomes undertaken to improve the understanding of pyrosome biology, the impact of pyrosome blooms on marine microbial systems, and microbial symbioses with marine animals. The diversity, relative abundance, and taxonomy of pyrosome-associated microorganisms were compared to seawater during a Pyrosoma atlanticum bloom in the Northern California Current System using high-throughput sequencing of the 16S rRNA gene, microscopy, and flow cytometry. We found that pyrosomes harbor a microbiome distinct from the surrounding seawater, which was dominated by a few novel taxa. In addition to the dominant taxa, numerous more rare pyrosome-specific microbial taxa were recovered. Multiple bioluminescent taxa were present in pyrosomes, which may be a source of the iconic pyrosome luminescence. We also discovered free-living marine microorganisms in association with pyrosomes, suggesting that pyrosome feeding impacts all microbial size classes but preferentially removes larger eukaryotic taxa. This study demonstrates that microbial symbionts and microbial prey are central to pyrosome biology. In addition to pyrosome impacts on higher trophic level marine food webs, the work suggests that pyrosomes also alter marine food webs at the microbial level through feeding and seeding of the marine microbial communities with their symbionts. Future efforts to predict pyrosome blooms, and account for their ecosystem impacts, should consider pyrosome interactions with marine microbial communities.
Collapse
Affiliation(s)
- Anne W Thompson
- Department of Biology, Portland State University, Portland, OR, USA.
| | - Anna C Ward
- Oregon Institute of Marine Biology, University of Oregon, Eugene, OR, USA
| | - Carey P Sweeney
- Department of Biology, Portland State University, Portland, OR, USA
| | - Kelly R Sutherland
- Oregon Institute of Marine Biology, University of Oregon, Eugene, OR, USA
| |
Collapse
|
3
|
Unraveling Heterogeneity of Coral Microbiome Assemblages in Tropical and Subtropical Corals in the South China Sea. Microorganisms 2020; 8:microorganisms8040604. [PMID: 32326359 PMCID: PMC7232356 DOI: 10.3390/microorganisms8040604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 02/03/2023] Open
Abstract
Understanding the coral microbiome is critical for predicting the fidelity of coral symbiosis with growing surface seawater temperature (SST). However, how the coral microbiome will respond to increasing SST is still understudied. Here, we compared the coral microbiome assemblages among 73 samples across six typical South China Sea coral species in two thermal regimes. The results revealed that the composition of microbiome varied across both coral species and thermal regimes, except for Porites lutea. The tropical coral microbiome displayed stronger heterogeneity and had a more un-compacted ecological network than subtropical coral microbiome. The coral microbiome was more strongly determined by environmental factors than host specificity. γ- (32%) and α-proteobacteria (19%), Bacteroidetes (14%), Firmicutes (14%), Actinobacteria (6%) and Cyanobacteria (2%) dominated the coral microbiome. Additionally, bacteria inferred to play potential roles in host nutrients metabolism, several keystone bacteria detected in human and plant rhizospheric microbiome were retrieved in explored corals. This study not only disentangles how different host taxa and microbiome interact and how such an interaction is affected by thermal regimes, but also identifies previously unrecognized keystone bacteria in corals, and also infers the community structure of coral microbiome will be changed from a compacted to an un-compacted network under elevated SST.
Collapse
|
4
|
Wong SK, Yoshizawa S, Nakajima Y, Cuadra MJ, Nogi Y, Nakamura K, Takami H, Ogura Y, Hayashi T, Chiura HX, Hamasaki K. Amylibacter kogurei sp. nov., a novel marine alphaproteobacterium isolated from the coastal sea surface microlayer of a marine inlet. Int J Syst Evol Microbiol 2018; 68:2872-2877. [DOI: 10.1099/ijsem.0.002911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Shu-Kuan Wong
- 1Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Susumu Yoshizawa
- 1Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Yu Nakajima
- 1Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Marie Johanna Cuadra
- 2Division of Biological Sciences, College of Arts and Sciences, University of the Philippines Visayas, Iloilo, Philippines
| | - Yuichi Nogi
- 3Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Keiji Nakamura
- 4Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideto Takami
- 3Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yoshitoshi Ogura
- 4Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuya Hayashi
- 4Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Xavier Chiura
- 1Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Koji Hamasaki
- 1Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
5
|
Feng T, Kim KH, Chun BH, Jeon CO. Amylibacter lutimaris sp. nov., isolated from sea-tidal flat sediment. Int J Syst Evol Microbiol 2018; 68:2088-2092. [DOI: 10.1099/ijsem.0.002805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Tingye Feng
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Kyung Hyun Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Byung Hee Chun
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
6
|
Zhang YJ, Liu XF, Kuang BZ, Zhang XY, Zhou MY, Chen S. Neptunicoccus sediminis gen. nov., sp. nov., a member of the family Rhodobacteraceae isolated from the Yellow Sea. Int J Syst Evol Microbiol 2018; 68:1702-1706. [DOI: 10.1099/ijsem.0.002728] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yan-Jiao Zhang
- Shandong Province Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Xu-Feng Liu
- Shandong Province Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Bao-Zhi Kuang
- Shandong Province Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, PR China
| | - Ming-Yang Zhou
- Shandong Provincial Key Laboratory of Fine Chemicals, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, 250353, PR China
| | - Shiyong Chen
- Shandong engineering research center for aquatic animal immune preparation, Marine Science and Engineering College, Qingdao Agricultural University, Shandong 266109, PR China
- Shandong Province Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| |
Collapse
|
7
|
Nedashkovskaya OI, Kim SG, Zhukova NV, Mikhailov VV. Olleya algicola sp. nov., a marine bacterium isolated from the green alga Ulva fenestrata. Int J Syst Evol Microbiol 2017; 67:2205-2210. [DOI: 10.1099/ijsem.0.001926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Olga I. Nedashkovskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of the Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100 Let Vladivostoku 159, 690022, Vladivostok, Russia
- Far Eastern Federal University, Sukhanova St. 8, 690950, Vladivostok, Russia
| | - Song-Gun Kim
- Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si, Jeollabuk-do 56212, Republic of Korea
| | - Natalia V. Zhukova
- Far Eastern Federal University, Sukhanova St. 8, 690950, Vladivostok, Russia
- A.V. Zhirmunsky Institute of Marine Biology of the Far-Eastern Branch of the Russian Academy of Sciences, Pal’chevskogo St. 17, 690032, Vladivostok, Russia
| | - Valery V. Mikhailov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of the Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100 Let Vladivostoku 159, 690022, Vladivostok, Russia
- Far Eastern Federal University, Sukhanova St. 8, 690950, Vladivostok, Russia
| |
Collapse
|
8
|
Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2016; 66:2463-2466. [DOI: 10.1099/ijsem.0.001149] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 91904 Jerusalem, Israel
| | - George M. Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|