1
|
Harrison LM, Lacher DW, Mammel MK, Leonard SR. Comparative Transcriptomics of Shiga Toxin-Producing and Commensal Escherichia coli and Cytokine Responses in Colonic Epithelial Cell Culture Infections. Front Cell Infect Microbiol 2020; 10:575630. [PMID: 33194815 PMCID: PMC7649339 DOI: 10.3389/fcimb.2020.575630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Ingestion of Shiga toxin-producing Escherichia coli (STEC) can result in a range of illness severity from asymptomatic to hemorrhagic colitis and death; thus risk assessment of STEC strains for human pathogenicity is important in the area of food safety. Illness severity depends in part on the combination of virulence genes carried in the genome, which can vary between strains even of identical serotype. To better understand how core genes are regulated differently among strains and to identify possible novel STEC virulence gene candidates that could be added to the risk assessment repertoire, we used comparative transcriptomics to investigate global gene expression differences between two STEC strains associated with severe illness and a commensal E. coli strain during in vitro intestinal epithelial cell (IEC) infections. Additionally, we compared a wide array of concomitant cytokine levels produced by the IECs. The cytokine expression levels were examined for a pattern representing STEC pathogenicity; however, while one STEC strain appeared to elicit a proinflammatory response, infection by the other strain produced a pattern comparable to the commensal E. coli. This result may be explained by the significant differences in gene content and expression observed between the STEC strains. RNA-Seq analysis revealed considerable disparity in expression of genes in the arginine and tryptophan biosynthesis/import pathways between the STEC strains and the commensal E. coli strain, highlighting the important role some amino acids play in STEC colonization and survival. Contrasting differential expression patterns were observed for genes involved in respiration among the three strains suggesting that metabolic diversity is a strategy utilized to compete with resident microflora for successful colonization. Similar temporal expression results for known and putative virulence genes were observed in the STEC strains, revealing strategies used for survival prior to and after initial adherence to IECs. Additionally, three genes encoding hypothetical proteins located in mobile genetic elements were, after interrogation of a large set of E. coli genomes, determined to likely represent novel STEC virulence factors.
Collapse
Affiliation(s)
- Lisa M Harrison
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - David W Lacher
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Mark K Mammel
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Susan R Leonard
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| |
Collapse
|
2
|
Gonzalez-Alba JM, Baquero F, Cantón R, Galán JC. Stratified reconstruction of ancestral Escherichia coli diversification. BMC Genomics 2019; 20:936. [PMID: 31805853 PMCID: PMC6896753 DOI: 10.1186/s12864-019-6346-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/28/2019] [Indexed: 12/15/2022] Open
Abstract
Background Phylogenetic analyses of the bacterial genomes based on the simple classification in core- genes and accessory genes pools could offer an incomplete view of the evolutionary processes, of which some are still unresolved. A combined strategy based on stratified phylogeny and ancient molecular polymorphisms is proposed to infer detailed evolutionary reconstructions by using a large number of whole genomes. This strategy, based on the highest number of genomes available in public databases, was evaluated for improving knowledge of the ancient diversification of E. coli. This staggered evolutionary scenario was also used to investigate whether the diversification of the ancient E. coli lineages could be associated with particular lifestyles and adaptive strategies. Results Phylogenetic reconstructions, exploiting 6220 available genomes in Genbank, established the E. coli core genome in 1023 genes, representing about 20% of the complete genome. The combined strategy using stratified phylogeny plus molecular polymorphisms inferred three ancient lineages (D, EB1A and FGB2). Lineage D was the closest to E. coli root. A staggered diversification could also be proposed in EB1A and FGB2 lineages and the phylogroups into these lineages. Several molecular markers suggest that each lineage had different adaptive trajectories. The analysis of gained and lost genes in the main lineages showed that functions of carbohydrates utilization (uptake of and metabolism) were gained principally in EB1A lineage, whereas loss of environmental-adaptive functions in FGB2 lineage were observed, but this lineage showed higher accumulated mutations and ancient recombination events. The population structure of E. coli was re-evaluated including up to 7561 new sequenced genomes, showing a more complex population structure of E. coli, as a new phylogroup, phylogroup I, was proposed. Conclusions A staggered reconstruction of E. coli phylogeny is proposed, indicating evolution from three ancestral lineages to reach all main known phylogroups. New phylogroups were confirmed, suggesting an increasingly complex population structure of E. coli. However these new phylogroups represent < 1% of the global E. coli population. A few key evolutionary forces have driven the diversification of the two main E. coli lineages, metabolic flexibility in one of them and colonization-virulence in the other.
Collapse
Affiliation(s)
- José Maria Gonzalez-Alba
- Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,CIBER en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Fernando Baquero
- Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,CIBER en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Unidad de Resistencia a Antibióticos y Virulencia Bacteriana, Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Juan Carlos Galán
- Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain. .,CIBER en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain. .,Unidad de Resistencia a Antibióticos y Virulencia Bacteriana, Madrid, Spain.
| |
Collapse
|
3
|
Zhang M, Zhang X, Tong L, Wang Y, Ou D, Zhang J, Wu Q, Ye Y. Genes involved in tolerance to osmotic stress by random mutagenesis in Cronobacter malonaticus. J Dairy Sci 2018; 101:3851-3858. [PMID: 29454685 DOI: 10.3168/jds.2017-13995] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/28/2017] [Indexed: 12/18/2022]
Abstract
Cronobacter malonaticus is one of the opportunistic food-borne pathogens in powdered infant formula and has unusual abilities to survive under environmental stresses such as osmotic conditions. However, the genes involved in osmotic stress have received little attention in C. malonaticus. Here, genes involved in osmotic stress were determined in C. malonaticus using a transposon mutagenesis approach. According to the growth of mutants (n = 215) under 5.0% NaCl concentration, the survival of 5 mutants under osmotic stress was significantly decreased compared with that of the wild type strain. Five mutating sites, including potassium efflux protein KefA, inner membrane protein YqjF, peptidylprolyl isomerase, Cys-tRNA(Pro)/Cys-tRNA(Cys) deacylase, and oligogalacturonate lyase were successfully identified. In addition, the biofilm formation of 5 mutants was determined using crystal violet staining, scanning electron microscopy, and confocal laser scanning microscopy, and the biofilms of 5 mutants significantly decreased within 72 h compared with that of wild type strain. This is the first report to determine the genes involved in osmotic tolerance in C. malonaticus. The findings provided valuable information for deep understanding of the mechanism of survival of C. malonaticus under osmotic stress, and a possible relationship between biofilm formation and tolerance to osmotic stress was also demonstrated in C. malonaticus.
Collapse
Affiliation(s)
- Maofeng Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Xiyan Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Liaowang Tong
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yaping Wang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Dexin Ou
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Yingwang Ye
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| |
Collapse
|
4
|
Tramonti A, De Santis F, Pennacchietti E, De Biase D. The yhiM gene codes for an inner membrane protein involved in GABA export in Escherichia coli. AIMS Microbiol 2017; 3:71-87. [PMID: 31294150 PMCID: PMC6604978 DOI: 10.3934/microbiol.2017.1.71] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 02/08/2017] [Indexed: 01/11/2023] Open
Abstract
In order to survive the exposure to acid pH, Escherichia coli activates molecular circuits leading from acid tolerance to extreme acid resistance (AR). The activation of the different circuits involves several global and specific regulators affecting the expression of membrane, periplasmic and cytosolic proteins acting at different levels to dampen the harmful consequences of the uncontrolled entry of protons intracellularly. Many genes coding for the structural components of the AR circuits (protecting from pH ≤ 2.5) and their specific transcriptional regulators cluster in a genomic region named AFI (acid fitness island) and respond in the same way to global regulators (such as RpoS and H-NS) as well as to anaerobiosis, alkaline, cold and respiratory stresses, in addition to the acid stress. Notably some genes coding for structural components of AR, though similarly regulated, are non-AFI localised. Amongst these the gadBC operon, coding for the major structural components of the glutamate-based AR system, and the ybaS gene, coding for a glutaminase required for the glutamine-based AR system. The yhiM gene, a non-AFI gene, appears to belong to this group. We mapped the transcription start of the 1.1 kb monocistronic yhiM transcript: it is an adenine residue located 22 nt upstream a GTG start codon. By real-time PCR we show that GadE and GadX equally affect the expression of yhiM under oxidative growth conditions. While YhiM is partially involved in the RpoS-dependent AR, we failed to detect a significant involvement in the glutamate- or glutamine-dependent AR at pH ≤ 2.5. However, when grown in EG at pH 5.0, the yhiM mutant displays impaired GABA export, whereas when YhiM is overexpressed, an increases of GABA export in EG medium in the pH range 2.5-5.5 is observed. Our data suggest that YhiM is a GABA transporter with a physiological role more relevant at mildly acidic pH, but not a key component of AR at pH < 2.5.
Collapse
Affiliation(s)
- Angela Tramonti
- Institute of Molecular Biology and Pathology, CNR, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Fiorenzo De Santis
- Department of medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Corso della Repubblica 79, 04100 Latina, Italy
| | - Eugenia Pennacchietti
- Department of medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Corso della Repubblica 79, 04100 Latina, Italy
| | - Daniela De Biase
- Department of medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Corso della Repubblica 79, 04100 Latina, Italy
| |
Collapse
|