1
|
Gonçalves OS, Santana MF. Uncovering the Secrets of Slow-Growing Bacteria in Tropical Savanna Soil Through Isolation and Genomic Analysis. MICROBIAL ECOLOGY 2023; 86:2687-2702. [PMID: 37507488 DOI: 10.1007/s00248-023-02275-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
One gram of soil holds ten billion bacteria of thousands of different species, but most remain unknown, and one of the serious issues is intrinsic to slow-growing bacteria. In this study, we aimed to isolate and characterize slow-growing bacteria from Brazilian Cerrado soil. Over a period of 4 weeks, we conducted an incubation process and selected a total of 92 isolates. These isolates, consisting mostly of slow-growing bacteria, have the ability to thrive in low-water conditions and possess features that promote plant growth. To identify the isolated bacteria, we performed 16S rRNA sequencing analysis and found that the slow-growing strains were genetically similar to known bacterial species but also belonged to a novel group of species. The new strains identified were Caballeronia sp., Neobacillus sp., Bradyrhizobium sp., and high GC Gram-positive species. Furthermore, we conducted growth experiments using various culture media and temperature conditions. These experiments revealed an extended lag phase for five strains, indicating their slow growth characteristics. Genomic analysis of these five slow-growing bacteria showed their potential to participate in biogeochemical cycles, metabolize various carbohydrates, encode proteins with a role in promoting plant growth and have biosynthetic potential for secondary metabolites. Taken together, our findings reveal the untapped potential of slow-growing bacteria in tropical savanna soils.
Collapse
Affiliation(s)
- Osiel Silva Gonçalves
- Grupo de Genômica Eco-evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Mateus Ferreira Santana
- Grupo de Genômica Eco-evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
2
|
dos Santos Ferreira N, Coniglio A, Puente M, Sant’Anna FH, Maroniche G, García J, Molina R, Nievas S, Volpiano CG, Ambrosini A, Passaglia LMP, Pedraza RO, Reis VM, Zilli JÉ, Cassan F. Genome-based reclassification of Azospirillum brasilense Az39 as the type strain of Azospirillum argentinense sp. nov. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain Az39T of
Azospirillum
is a diazotrophic plant growth-promoting bacterium isolated in 1982 from the roots of wheat plants growing in Marcos Juárez, Córdoba, Argentina. It produces indole-3-acetic acid in the presence of l-tryptophan as a precursor, grows at 20–38 °C (optimal 38 °C), and the cells are curved or spiral-shaped, with diameters ranging from 0.5–0.9 to 1.8–2.2 µm. They contain C16 : 0, C18 : 0 and C18 : 1
ω7c/ω6c as the main fatty acids. Phylogenetic analysis of its 16S rRNA gene sequence confirmed that this strain belongs to the genus
Azospirillum
, showing a close relationship with
Azospirillum baldaniorum
Sp245T,
Azospirillum brasilense
Sp7T and
Azospirillum formosense
CC-Nfb-7T. Housekeeping gene analysis revealed that Az39T, together with five strains of the genus (Az19, REC3, BR 11975, MTCC4035 and MTCC4036), form a cluster apart from
A. baldaniorum
Sp245T,
A. brasilense
Sp7T and
A. formosense
CC-Nfb-7T. Average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) between Az39T and the aforementioned type strains revealed values below 96 %, the circumscription limit for the species delineation (ANI: 95.3, 94.1 and 94.0 %; dDDH: 62.9, 56.3 and 55.6 %). Furthermore, a phylogeny evaluation of the core proteome, including 809 common shared proteins, showed an independent grouping of Az39T, Az19, REC3, BR 11975, MTCC4035 and MTCC4036. The G+C content in the genomic DNA of these six strains varied from 68.3 to 68.5 %. Based on the combined phylogenetic, genomic and phenotypic characterization presented here, we consider that strain Az39T, along with strains Az19, REC3, BR 11975, MTCC4035 and MTCC4036, are members of a new
Azospirillum
species, for which the name Azospirillum argentinense sp. nov. is proposed. The type strain is Az39T (=LBPCV39T=BR 148428T=CCCT 22.01T).
Collapse
Affiliation(s)
- Natália dos Santos Ferreira
- Programa de Pós-Graduação em Agronomia-Ciência do Solo, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000 Seropédica, Rio de Janeiro, Brazil
| | - Anahí Coniglio
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-Microorganismo, Instituto de Investigaciones Agrobiotecnológicas (INIAB-CONICET) FCEFQyN, Universidad Nacional de Río Cuarto, Ruta 36, Km 601, Río Cuarto, Ruta 36, Km 601, Río Cuarto, Córdoba, Argentina
| | - Mariana Puente
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola, Nicolás Repetto y de los Reseros, Hurlingham 1686, Buenos Aires, Argentina
| | | | - Guillermo Maroniche
- Facultad de Ciencias Agrarias, CONICET, Universidad Nacional de Mar del Plata, km 73.5, km 73.5, 20 B7620, Buenos Aires, Argentina
| | - Julia García
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola, Nicolás Repetto y de los Reseros, Hurlingham 1686, Buenos Aires, Argentina
| | - Romina Molina
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-Microorganismo, Instituto de Investigaciones Agrobiotecnológicas (INIAB-CONICET) FCEFQyN, Universidad Nacional de Río Cuarto, Ruta 36, Km 601, Río Cuarto, Ruta 36, Km 601, Río Cuarto, Córdoba, Argentina
| | - Sofia Nievas
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-Microorganismo, Instituto de Investigaciones Agrobiotecnológicas (INIAB-CONICET) FCEFQyN, Universidad Nacional de Río Cuarto, Ruta 36, Km 601, Río Cuarto, Ruta 36, Km 601, Río Cuarto, Córdoba, Argentina
| | - Camila Gazolla Volpiano
- Departamento de Genética and Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biociências, 9500, Bento Gonçalves Ave, Porto Alegre, RS, Brazil
| | - Adriana Ambrosini
- Departamento de Genética and Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biociências, 9500, Bento Gonçalves Ave, Porto Alegre, RS, Brazil
| | - Luciane M. P. Passaglia
- Departamento de Genética and Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biociências, 9500, Bento Gonçalves Ave, Porto Alegre, RS, Brazil
| | - Raul O. Pedraza
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, Av. Kirchner 1900. (4000) 24 San Miguel de Tucumán, Tucumán, Argentina
| | | | - Jerri Édson Zilli
- Embrapa Agrobiologia, BR 465 Km 7, 23891-000, Seropédica, Rio de Janeiro, Brazil
| | - Fabricio Cassan
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-Microorganismo, Instituto de Investigaciones Agrobiotecnológicas (INIAB-CONICET) FCEFQyN, Universidad Nacional de Río Cuarto, Ruta 36, Km 601, Río Cuarto, Ruta 36, Km 601, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
3
|
Dos Santos Ferreira N, Hayashi Sant' Anna F, Massena Reis V, Ambrosini A, Gazolla Volpiano C, Rothballer M, Schwab S, Baura VA, Balsanelli E, Pedrosa FDO, Pereira Passaglia LM, Maltempi de Souza E, Hartmann A, Cassan F, Zilli JE. Genome-based reclassification of Azospirillum brasilense Sp245 as the type strain of Azospirillum baldaniorum sp. nov. Int J Syst Evol Microbiol 2021; 70:6203-6212. [PMID: 33064068 DOI: 10.1099/ijsem.0.004517] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Azospirillum sp. strain Sp245T, originally identified as belonging to Azospirillum brasilense, is recognized as a plant-growth-promoting rhizobacterium due to its ability to fix atmospheric nitrogen and to produce plant-beneficial compounds. Azospirillum sp. Sp245T and other related strains were isolated from the root surfaces of different plants in Brazil. Cells are Gram-negative, curved or slightly curved rods, and motile with polar and lateral flagella. Their growth temperature varies between 20 to 38 °C and their carbon source utilization is similar to other Azospirillum species. A preliminary 16S rRNA sequence analysis showed that the new species is closely related to A. brasilense Sp7T and A. formosense CC-Nfb-7T. Housekeeping genes revealed that Azospirillum sp. Sp245T, BR 12001 and Vi22 form a separate cluster from strain A. formosense CC-Nfb-7T, and a group of strains closely related to A. brasilense Sp7T. Overall genome relatedness index (OGRI) analyses estimated based on average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) between Azospirillum sp. Sp245T and its close relatives to other Azospirillum species type strains, such as A. brasilense Sp7T and A. formosense CC-Nfb-7T , revealed values lower than the limit of species circumscription. Moreover, core-proteome phylogeny including 1079 common shared proteins showed the independent clusterization of A. brasilense Sp7T, A. formosense CC-Nfb-7T and Azospirillum sp. Sp245T, a finding that was corroborated by the genome clustering of OGRI values and housekeeping phylogenies. The DNA G+C content of the cluster of Sp245T was 68.4-68.6 %. Based on the phylogenetic, genomic, phenotypical and physiological analysis, we propose that strain Sp245T together with the strains Vi22 and BR12001 represent a novel species of the genus Azospirillum, for which the name Azospirillum baldaniorum sp. nov. is proposed. The type strain is Sp245T (=BR 11005T=IBPPM 219T) (GCF_007827915.1, GCF_000237365.1, and GCF_003119195.2).
Collapse
Affiliation(s)
- Natalia Dos Santos Ferreira
- Programa de Pós-Graduação em Agronomia-Ciência do Solo, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, Rio de Janeiro, Brazil
| | - Fernando Hayashi Sant' Anna
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Adriana Ambrosini
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Camila Gazolla Volpiano
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Michael Rothballer
- Institute of Network Biology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 185764 Neuherberg, Germany
| | - Stefan Schwab
- Embrapa Agrobiologia, BR 465 Km 7, 23891-000, Seropédica, Rio de Janeiro, Brazil
| | - Valter Antonio Baura
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação de Nitrogênio, UFPR, Curitiba, Brazil
| | - Eduardo Balsanelli
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação de Nitrogênio, UFPR, Curitiba, Brazil
| | - Fabio de Oliveira Pedrosa
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação de Nitrogênio, UFPR, Curitiba, Brazil
| | | | - Emanuel Maltempi de Souza
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação de Nitrogênio, UFPR, Curitiba, Brazil
| | - Anton Hartmann
- Faculty of Biology, Microbe-Host-Interactions, Ludwig-Maximilian-University Muenchen, 82152 Planegg/Martinsried, Germany
| | - Fabricio Cassan
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-microorganismo. Instituto de Investigaciones Agrobiotecnológicas (INIAB-CONICET), FCEFQyN. Universidad Nacional de Río Cuarto., Ruta 36, Km 601, Río Cuarto, Córdoba, Argentina
| | - Jerri Edson Zilli
- Embrapa Agrobiologia, BR 465 Km 7, 23891-000, Seropédica, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Fossou RK, Pothier JF, Zézé A, Perret X. Bradyrhizobium ivorense sp. nov. as a potential local bioinoculant for Cajanus cajan cultures in Côte d'Ivoire. Int J Syst Evol Microbiol 2020; 70:1421-1430. [PMID: 32122457 PMCID: PMC7397250 DOI: 10.1099/ijsem.0.003931] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For many smallholder farmers of Sub-Saharan Africa, pigeonpea (Cajanus cajan) is an important crop to make ends meet. To ascertain the taxonomic status of pigeonpea isolates of Côte d’Ivoire previously identified as bradyrhizobia, a polyphasic approach was applied to strains CI-1BT, CI-14A, CI-19D and CI-41S. Phylogeny of 16S ribosomal RNA (rRNA) genes placed these nodule isolates in a separate lineage from current species of the B. elkanii super clade. In phylogenetic analyses of single and concatenated partial dnaK, glnII, gyrB, recA and rpoB sequences, the C. cajan isolates again formed a separate lineage, with strain CI-1BT sharing the highest sequence similarity (95.2 %) with B. tropiciagri SEMIA 6148T. Comparative genomic analyses corroborated the novel species status, with 86 % ANIb and 89 % ANIm as the highest average nucleotide identity (ANI) values with B. elkanii USDA 76T. Although CI-1BT, CI-14A, CI-19D and CI-41S shared similar phenotypic and metabolic properties, growth of CI-41S was slower in/on various media. Symbiotic efficacy varied significantly between isolates, with CI-1BT and CI-41S scoring on the C. cajan ‘Light-Brown’ landrace as the most and least proficient bacteria, respectively. Also proficient on Vigna radiata (mung bean), Vigna unguiculata (cowpea, niébé) and additional C. cajan cultivars, CI-1BT represents a potential bioinoculant adapted to local soil conditions and capable of fostering the growth of diverse legume crops in Côte d'Ivoire. Given the data presented here, we propose the 19 C. cajan isolates to belong to a novel species called Bradyrhizobium ivorense sp. nov., with CI-1BT (=CCOS 1862T=CCMM B1296T) as a type strain.
Collapse
Affiliation(s)
- Romain K Fossou
- Laboratoire de Biotechnologies Végétale et Microbienne, Unité Mixte de Recherche et d'Innovation en Sciences Agronomiques et Génie Rural, Institut National Polytechnique Felix Houphouët-Boigny, Yamoussoukro, Côte d'Ivoire.,Department of Botany and Plant Biology, Microbiology Unit, University of Geneva, Sciences III, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Joël F Pothier
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, CH-8820 Wädenswil, Switzerland
| | - Adolphe Zézé
- Laboratoire de Biotechnologies Végétale et Microbienne, Unité Mixte de Recherche et d'Innovation en Sciences Agronomiques et Génie Rural, Institut National Polytechnique Felix Houphouët-Boigny, Yamoussoukro, Côte d'Ivoire
| | - Xavier Perret
- Department of Botany and Plant Biology, Microbiology Unit, University of Geneva, Sciences III, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
5
|
Urquiaga MCDO, Klepa MS, Somasegaran P, Ribeiro RA, Delamuta JRM, Hungria M. Bradyrhizobium frederickii sp. nov., a nitrogen-fixing lineage isolated from nodules of the caesalpinioid species Chamaecrista fasciculata and characterized by tolerance to high temperature in vitro. Int J Syst Evol Microbiol 2019; 69:3863-3877. [PMID: 31486763 DOI: 10.1099/ijsem.0.003697] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The symbioses between legumes and nitrogen-fixing rhizobia make the greatest contribution to the global nitrogen input via the process of biological nitrogen fixation (BNF). Bradyrhizobium stands out as the main genus nodulating basal Caesalpinioideae. We performed a polyphasic study with 11 strains isolated from root nodules of Chamaecristafasciculata, an annual multi-functional native legume of the USA. In the 16S rRNA gene phylogeny the strains were clustered in the Bradyrhizobium japonicumsuperclade. The results of analysis of the intergenic transcribed spacer (ITS) indicated less than 89.9 % similarity to other Bradyrhizobium species. Multilocus sequence analysis (MLSA) with four housekeeping genes (glnII, gyrB, recA and rpoB) confirmed the new group, sharing less than 95.2 % nucleotide identity with other species. The MLSA with 10 housekeeping genes (atpD, dnaK, gap, glnII, gltA, gyrB, pnp, recA, rpoB and thrC) indicated Bradyrhizobium daqingense as the closest species. Noteworthy, high genetic diversity among the strains was confirmed in the analyses of ITS, MLSA and BOX-PCR. Average nucleotide identity and digital DNA-DNA hybridization values were below the threshold of described Bradyrhizobium species, of 89.7 and 40 %, respectively. In the nifH and nodC phylogenies, the strains were grouped together, but with an indication of horizontal gene transfer, showing higher similarity to Bradyrhizobium arachidis and Bradyrhizobium forestalis. Other phenotypic, genotypic and symbiotic properties were evaluated, and the results altogether support the description of the CNPSo strains as representatives of the new species Bradyrhizobiumfrederickii sp. nov., with CNPSo 3426T (=USDA 10052T=U686T=CL 20T) as the type strain.
Collapse
Affiliation(s)
- Maria Clara de Oliveira Urquiaga
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes 70.040-020 Brasília, Distrito Federal, Brazil.,Embrapa Soja, C.P. 231, 86001-970 Londrina, Paraná, Brazil.,Department of Microbiology, Universidade Estadual de Londrina, C.P. 10.011, 86057970, Londrina, Paraná, Brazil
| | - Milena Serenato Klepa
- Embrapa Soja, C.P. 231, 86001-970 Londrina, Paraná, Brazil.,Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul 71605-001 Brasília, Distrito Federal, Brazil.,Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes 70.040-020 Brasília, Distrito Federal, Brazil
| | | | - Renan Augusto Ribeiro
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul 71605-001 Brasília, Distrito Federal, Brazil
| | - Jakeline Renata Marcon Delamuta
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul 71605-001 Brasília, Distrito Federal, Brazil.,Embrapa Soja, C.P. 231, 86001-970 Londrina, Paraná, Brazil
| | - Mariangela Hungria
- Department of Microbiology, Universidade Estadual de Londrina, C.P. 10.011, 86057970, Londrina, Paraná, Brazil.,Embrapa Soja, C.P. 231, 86001-970 Londrina, Paraná, Brazil.,Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul 71605-001 Brasília, Distrito Federal, Brazil
| |
Collapse
|
6
|
de Lajudie PM, Andrews M, Ardley J, Eardly B, Jumas-Bilak E, Kuzmanović N, Lassalle F, Lindström K, Mhamdi R, Martínez-Romero E, Moulin L, Mousavi SA, Nesme X, Peix A, Puławska J, Steenkamp E, Stępkowski T, Tian CF, Vinuesa P, Wei G, Willems A, Zilli J, Young P. Minimal standards for the description of new genera and species of rhizobia and agrobacteria. Int J Syst Evol Microbiol 2019; 69:1852-1863. [PMID: 31140963 DOI: 10.1099/ijsem.0.003426] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herein the members of the Subcommittee on Taxonomy of Rhizobia and Agrobacteria of the International Committee on Systematics of Prokaryotes review recent developments in rhizobial and agrobacterial taxonomy and propose updated minimal standards for the description of new species (and genera) in these groups. The essential requirements (minimal standards) for description of a new species are (1) a genome sequence of at least the proposed type strain and (2) evidence for differentiation from other species based on genome sequence comparisons. It is also recommended that (3) genetic variation within the species is documented with sequence data from several clearly different strains and (4) phenotypic features are described, and their variation documented with data from a relevant set of representative strains. Furthermore, it is encouraged that information is provided on (5) nodulation or pathogenicity phenotypes, as appropriate, with relevant gene sequences. These guidelines supplement the current rules of general bacterial taxonomy, which require (6) a name that conforms to the International Code of Nomenclature of Prokaryotes, (7) validation of the name by publication either directly in the International Journal of Systematic and Evolutionary Microbiology or in a validation list when published elsewhere, and (8) deposition of the type strain in two international culture collections in separate countries.
Collapse
Affiliation(s)
| | - Mitchell Andrews
- 2Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Julie Ardley
- 3School of Veterinary and Life Sciences, Murdoch University, Murdoch, Australia
| | | | - Estelle Jumas-Bilak
- 5UMR 5569, Department of Microbiology, Faculty of Pharmacy, University of Montpellier, France
| | - Nemanja Kuzmanović
- 6Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| | - Florent Lassalle
- 7Department of Infectious Disease Epidemiology - MRC Centre for Outbreak Analysis and Modelling, St Mary's Hospital, Praed Street, London W2 1NY, UK
| | - Kristina Lindström
- 8Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Ridha Mhamdi
- 9Centre of Biotechnology of Borj-Cedria, BP 901 Hammam-lif 2050, Tunisia
| | - Esperanza Martínez-Romero
- 10Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca, Morelos, Mexico
| | - Lionel Moulin
- 11IRD, CIRAD, University of Montpellier, IPME, Montpellier, France
| | - Seyed Abdollah Mousavi
- 8Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Xavier Nesme
- 12LEM, UCBL, CNRS, INRA, Univ Lyon, Villeurbanne, France
| | - Alvaro Peix
- 13Instituto de Recursos Naturales y Agrobiología, IRNASA-CSIC, c/Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Joanna Puławska
- 14Department of Phytopathology, Research Institute of Horticulture, ul. Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
| | - Emma Steenkamp
- 15Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - Tomasz Stępkowski
- 16Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Chang-Fu Tian
- 17State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, College of Biological Sciences, China Agricultural University, 100193, Beijing, PR China
| | - Pablo Vinuesa
- 10Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca, Morelos, Mexico
| | - Gehong Wei
- 18Northwest A&F University, Yangling, Shaanxi, PR China
| | - Anne Willems
- 19Department Biochemistry and Microbiology, Lab. Microbiology, Ghent University, Belgium
| | - Jerri Zilli
- 20Embrapa Agrobiologia, BR 465 km 07, Seropédica, Rio de Janeiro, Brazil, 23891-000, Brazil
| | - Peter Young
- 21Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
7
|
Avontuur JR, Palmer M, Beukes CW, Chan WY, Coetzee MPA, Blom J, Stępkowski T, Kyrpides NC, Woyke T, Shapiro N, Whitman WB, Venter SN, Steenkamp ET. Genome-informed Bradyrhizobium taxonomy: where to from here? Syst Appl Microbiol 2019; 42:427-439. [PMID: 31031014 DOI: 10.1016/j.syapm.2019.03.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023]
Abstract
Bradyrhizobium is thought to be the largest and most diverse rhizobial genus, but this is not reflected in the number of described species. Although it was one of the first rhizobial genera recognised, its taxonomy remains complex. Various contemporary studies are showing that genome sequence information may simplify taxonomic decisions. Therefore, the growing availability of genomes for Bradyrhizobium will likely aid in the delineation and characterization of new species. In this study, we addressed two aims: first, we reviewed the availability and quality of available genomic resources for Bradyrhizobium. This was achieved by comparing genome sequences in terms of sequencing technologies used and estimated level of completeness for inclusion in genome-based phylogenetic analyses. Secondly, we utilized these genomes to investigate the taxonomic standing of Bradyrhizobium in light of its diverse lifestyles. Although genome sequences differed in terms of their quality and completeness, our data indicate that the use of these genome sequences is adequate for taxonomic purposes. By using these resources, we inferred a fully resolved, well-supported phylogeny. It separated Bradyrhizobium into seven lineages, three of which corresponded to the so-called supergroups known for the genus. Wide distribution of key lifestyle traits such as nodulation, nitrogen fixation and photosynthesis revealed that these traits have complicated evolutionary histories. We present the first robust Bradyrhizobium species phylogeny based on genome sequence information for investigating the evolution of this important assemblage of bacteria. Furthermore, this study provides the basis for using genome sequence information as a resource to make important taxonomic decisions, particularly at the species and genus levels.
Collapse
Affiliation(s)
- Juanita R Avontuur
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Marike Palmer
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Chrizelle W Beukes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Wai Y Chan
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa; Biotechnology Platform, Agricultural Research Council Onderstepoort Veterinary Institute (ARC-OVI), Onderstepoort 0110, South Africa
| | - Martin P A Coetzee
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Tomasz Stępkowski
- Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Poland
| | | | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, CA, United States
| | - Nicole Shapiro
- DOE Joint Genome Institute, Walnut Creek, CA, United States
| | - William B Whitman
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa. http://emma.steenkamp.up.ac.za
| |
Collapse
|
8
|
Jaiswal SK, Dakora FD. Widespread Distribution of Highly Adapted Bradyrhizobium Species Nodulating Diverse Legumes in Africa. Front Microbiol 2019; 10:310. [PMID: 30853952 PMCID: PMC6395442 DOI: 10.3389/fmicb.2019.00310] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/05/2019] [Indexed: 11/17/2022] Open
Abstract
Bradyrhizobium is one of the most cosmopolitan and diverse bacterial group nodulating a variety of host legumes in Africa, however, the diversity and distribution of bradyrhizobial symbionts nodulating indigenous African legumes are not well understood, though needed for increased food legume production. In this review, we have shown that many African food legumes are nodulated by bradyrhizobia, with greater diversity in Southern Africa compared to other parts of Africa. From a few studies done in Africa, the known bradyrhizobia (i.e., Bradyrhizobium elkanii, B. yuanmingense) along with many novel Bradyrhizobium species are the most dominant in African soils. This could be attributed to the unique edapho-climatic conditions of the contrasting environments in the continent. More studies are needed to identify the many novel bradyrhizobia resident in African soils in order to better understand the biogeography of bradyrhizobia and their potential for inoculant production.
Collapse
Affiliation(s)
- Sanjay K. Jaiswal
- Department of Chemistry, Faculty of Science, Tshwane University of Technology, Pretoria, South Africa
| | - Felix D. Dakora
- Department of Chemistry, Faculty of Science, Tshwane University of Technology, Pretoria, South Africa
| |
Collapse
|
9
|
de Lajudie PM, Young JPW. International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of rhizobia and agrobacteria Minutes of the closed meeting, Granada, 4 September 2017. Int J Syst Evol Microbiol 2018; 68:3363-3368. [DOI: 10.1099/ijsem.0.002974] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
10
|
Grönemeyer JL, Reinhold-Hurek B. Diversity of Bradyrhizobia in Subsahara Africa: A Rich Resource. Front Microbiol 2018; 9:2194. [PMID: 30294308 PMCID: PMC6158577 DOI: 10.3389/fmicb.2018.02194] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/27/2018] [Indexed: 01/08/2023] Open
Abstract
Making use of biological nitrogen fixation (BNF) with pulses and green manure legumes can help to alleviate nitrogen deficiencies and increase soil fertility, problems faced particularly in smallholder agriculture in Subsahara Africa (SSA). The isolation of indigenous rhizobia provides a basis for the formulation of rhizobial inoculants. Moreover, their identification and characterization contribute to the general understanding of species distribution and ecology. Here we discuss global species discovery of Bradyrhizobium spp. Although recently the number of validly published Bradyrhizobium species is rapidly increasing, their diversity in SSA is not well-represented. We summarize the recent knowledge on species diversity in the Bradyrhizobium yuanmingense lineage to which most SSA isolates belong, and their biogeographic distribution and adaptations. Most indigenous rhizobia appear to differ from species found on other continents. We stress that an as yet hidden diversity may be a rich resource for inoculant development in future. As some species are exceptionally temperature tolerant, they may be potential biofertilizer candidates for global warming scenarios.
Collapse
Affiliation(s)
| | - Barbara Reinhold-Hurek
- Department of Microbe-Plant Interactions, Faculty of Biology and Chemistry, Center for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| |
Collapse
|
11
|
Bradyrhizobium forestalis sp. nov., an efficient nitrogen-fixing bacterium isolated from nodules of forest legume species in the Amazon. Arch Microbiol 2018; 200:743-752. [DOI: 10.1007/s00203-018-1486-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 01/01/2023]
|
12
|
Molecular characterization of novel Bradyrhizobium strains nodulating Eriosema chinense and Flemingia vestita , important unexplored native legumes of the sub-Himalayan region (Meghalaya) of India. Syst Appl Microbiol 2017; 40:334-344. [DOI: 10.1016/j.syapm.2017.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/24/2017] [Accepted: 06/26/2017] [Indexed: 11/20/2022]
|