1
|
Li S, Li N, Wang Y, Zhang X, Wang J, Zhang M, Chen H. Structural Characterization of the Staphylococcus aureus Targeting Lectin Peptides from Garlic (Allium sativum L) by Liquid Nitrogen Grinding Coupled with the Proteomic and Antimicrobial Mechanism Analysis. Probiotics Antimicrob Proteins 2024; 16:964-978. [PMID: 37217612 DOI: 10.1007/s12602-023-10078-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 05/24/2023]
Abstract
Garlic has long been used as an antimicrobial spice and herbal remedy. The aim of this study was to isolate the antimicrobial agent in garlic water extract against Staphylococcus aureus (S. aureus) and investigate its antimicrobial mechanism. By an activity-guided separation, garlic lectin-derived peptides (GLDPs) with main molecular weight of around 12 kDa were extracted by liquid nitrogen grinding and identified with high bactericidal activity toward S. aureus, and the MIC was determined as 24.38 μg/mL. In-gel digestion-based proteomic analysis indicated that the peptide sequences were highly identical to the B strain of garlic protein lectin II. Structure analysis suggested that the secondary structure was strongly affected by lyophilization and thus resulted in the inactivation of GLDPs (P < 0.05). Mechanism study revealed that treatment of GLDPs resulted in cell membrane depolarization in a dose-dependent manner, and the disruptions of the cell wall and membrane integrities were observed under electric microscopies. GLDPs could successfully dock with cell wall component lipoteichoic acid (LTA) via van der Waals and conventional bonds in molecular docking analysis. These results suggested that GLDPs were responsible for the S. aureus targeting activity and might be promising candidates for antibiotic development against bacterial infection.
Collapse
Affiliation(s)
- Shuqin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Nannan Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yajie Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Xiaoyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Jia Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
2
|
Fukase K, Manabe Y, Shimoyama A. Diacetyl strategy for synthesis of NHAc containing glycans: enhancing glycosylation reactivity via diacetyl imide protection. Front Chem 2023; 11:1319883. [PMID: 38116104 PMCID: PMC10728286 DOI: 10.3389/fchem.2023.1319883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
The presence of NHAc groups in the substrates (both glycosyl donors and acceptors) significantly reduced the reactivity of glycosylation. This decrease was attributed to the NHAc groups forming intermolecular hydrogen bonds by the NHAc groups, thereby reducing molecular mobility. Hence, a diacetyl strategy involving the temporary conversion of NHAc to diacetyl imide (NAc2) was developed for the synthesis of NHAc-containing glycans. This strategy has two significant advantages for oligosaccharide synthesis. The NAc2 protection of NHAc substantially enhances the rate of glycosylation reactions, resulting in improved yields. Moreover, NAc2 can be readily reverted to NHAc by the simple removal of one acetyl group under mild basic conditions, obviating the necessity for treating the polar amino group. We have achieved the efficient synthesis of oligosaccharides containing GlcNHAc and N-glycans containing sialic acid using the diacetyl strategy.
Collapse
Affiliation(s)
- Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, Osaka, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, Osaka, Japan
| | - Atsushi Shimoyama
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
3
|
Younus M, Mohtasheem-ul-Hasan M, Ijaz S, Kamran M, Maqsood A, Saddique B, Nisar U, Ashraf M, Mahmoud EA, El-Sabrout AM, Elansary HO. Investigation of Euphorbia nivulia-HAM for Enzyme Inhibition Potential in Relation to the Phenolic and Flavonoid Contents and Radical Scavenging Activity. Life (Basel) 2022; 12:life12020321. [PMID: 35207608 PMCID: PMC8875530 DOI: 10.3390/life12020321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/17/2022] Open
Abstract
Euphorbia nivulia-Ham (EN) is a neglected medicinal plant traditionally used for a number of pathologies, but it has not been explored scientifically. In the current study, its various fractions were assessed for their phenolic and flavonoid content, radical scavenging, as well as its enzyme inhibitory potential. The hydro-alcoholic crude extract (ENCr) was subjected to a fractionation scheme to obtain different fractions, namely n-hexane (ENHF), chloroform (ENCF), n-butanol (ENBF), and aqueous fraction (ENAF). The obtained results revealed that the highest phenolic and flavonoid content, maximum radical scavenging potential (91 ± 0.55%), urease inhibition (54.36 ± 1.47%), and α-glucosidase inhibition (97.84 ± 1.87%) were exhibited by ENCr, while the ENBF fraction exhibited the highest acetylcholinestrase inhibition (57.32 ± 0.43%). Contrary to these, hydro-alcoholic crude as well as the other fractions showed no significant butyrylcholinestrases (BChE) and carbonic anhydrase inhibition activity. Conclusively, it was found that EN possesses a significant radical scavenging and enzyme inhibitory potential. Thus, the study may be regarded a step forward towards evidence-based phyto-medicine.
Collapse
Affiliation(s)
- Muhammad Younus
- Department of Pharmacognosy, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
- Department of Pharmacognosy, Faculty of Pharmacy, University of Karachi, Sindh 75270, Pakistan;
| | | | - Shakeel Ijaz
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, The University of Dublin, D02 PN40 Dublin, Ireland
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Correspondence: (S.I.); (M.K.); (H.O.E.)
| | - Muhammad Kamran
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide 5005, Australia
- Correspondence: (S.I.); (M.K.); (H.O.E.)
| | - Ambreen Maqsood
- Faculty of Agriculture, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (A.M.); (B.S.)
| | - Bushra Saddique
- Faculty of Agriculture, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (A.M.); (B.S.)
| | - Uzair Nisar
- Department of Pharmacology, Faculty of Pharmacy, Ziauddin University, Karachi 75600, Pakistan;
| | - Muhammad Ashraf
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Eman A. Mahmoud
- Department of Food Industries, Faculty of Agriculture, Damietta University, Damietta 34511, Egypt;
| | - Ahmed M. El-Sabrout
- Department of Applied Entomology and Zoology, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria 21545, Egypt;
| | - Hosam O. Elansary
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence: (S.I.); (M.K.); (H.O.E.)
| |
Collapse
|
4
|
Cho SH, Park JY, Kim CH. Systemic Lectin-Glycan Interaction of Pathogenic Enteric Bacteria in the Gastrointestinal Tract. Int J Mol Sci 2022; 23:1451. [PMID: 35163392 PMCID: PMC8835900 DOI: 10.3390/ijms23031451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
Microorganisms, such as bacteria, viruses, and fungi, and host cells, such as plants and animals, have carbohydrate chains and lectins that reciprocally recognize one another. In hosts, the defense system is activated upon non-self-pattern recognition of microbial pathogen-associated molecular patterns. These are present in Gram-negative and Gram-positive bacteria and fungi. Glycan-based PAMPs are bound to a class of lectins that are widely distributed among eukaryotes. The first step of bacterial infection in humans is the adhesion of the pathogen's lectin-like proteins to the outer membrane surfaces of host cells, which are composed of glycans. Microbes and hosts binding to each other specifically is of critical importance. The adhesion factors used between pathogens and hosts remain unknown; therefore, research is needed to identify these factors to prevent intestinal infection or treat it in its early stages. This review aims to present a vision for the prevention and treatment of infectious diseases by identifying the role of the host glycans in the immune response against pathogenic intestinal bacteria through studies on the lectin-glycan interaction.
Collapse
Affiliation(s)
- Seung-Hak Cho
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju 28160, Korea; (S.-H.C.); (J.-y.P.)
| | - Jun-young Park
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju 28160, Korea; (S.-H.C.); (J.-y.P.)
| | - Cheorl-Ho Kim
- Glycobiology Unit, Department of Biological Science, Sung Kyunkwan University, Suwon 16419, Korea
| |
Collapse
|
5
|
Peng YJ, Ding JL, Lin HY, Feng MG, Ying SH. A virulence-related lectin traffics into eisosome and contributes to functionality of cytomembrane and cell-wall in the insect-pathogenic fungus Beauveria bassiana. Fungal Biol 2021; 125:914-922. [PMID: 34649678 DOI: 10.1016/j.funbio.2021.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/29/2021] [Accepted: 06/12/2021] [Indexed: 11/25/2022]
Abstract
Lectins are characterized of the carbohydrate-binding ability and play comprehensive roles in fungal physiology (e.g., defense response, development and host-pathogen interaction). Beauveria bassiana, a filamentous entomopathogenic fungus, has a lectin-like protein containing a Fruit Body_domain (BbLec1). BbLec1 could bind to chitobiose and chitin in fungal cell wall. BbLec1 proteins interacted with each other to form multimers, and translocated into eisosomes. Further, the interdependence between BbLec1 and the eisosome protein PliA was essential for stabilizing the eisosome architecture. To test the BbLec1 roles in B. bassiana, we constructed the gene disruption and complementation mutants. Notably, the BbLec1 loss resulted in the impaired cell wall in mycelia and conidia as well as conidial formation capacity. In addition, disruption of BbLec1 led to the reduced cytomembrane integrity and the enhanced sensitivity to osmotic stress. Finally, ΔBbLec1 mutant strain displayed the weakened virulence when compared with the wild-type strain. Taken together, BbLec1 traffics into eisosome and links the functionality of eisosome to development and virulence of B. bassiana.
Collapse
Affiliation(s)
- Yue-Jin Peng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jin-Li Ding
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hai-Yan Lin
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Tsutsui M, Sianturi J, Masui S, Tokunaga K, Manabe Y, Fukase K. Efficient Synthesis of Antigenic Trisaccharides ContainingN-Acetylglucosamine: Protection of NHAc as NAc2. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901809] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Masato Tsutsui
- Department of Chemistry; Graduate School of Science; Osaka University; Machikaneyama 1-1, Toyonaka 560-0043 Osaka Japan
| | - Julinton Sianturi
- Department of Chemistry; Graduate School of Science; Osaka University; Machikaneyama 1-1, Toyonaka 560-0043 Osaka Japan
| | - Seiji Masui
- Department of Chemistry; Graduate School of Science; Osaka University; Machikaneyama 1-1, Toyonaka 560-0043 Osaka Japan
| | - Kento Tokunaga
- Department of Chemistry; Graduate School of Science; Osaka University; Machikaneyama 1-1, Toyonaka 560-0043 Osaka Japan
| | - Yoshiyuki Manabe
- Department of Chemistry; Graduate School of Science; Osaka University; Machikaneyama 1-1, Toyonaka 560-0043 Osaka Japan
- Core for Medicine and Science Collaborative Research and Education; Project Research Center for Fundamental Science; Osaka University; Osaka Japan
| | - Koichi Fukase
- Department of Chemistry; Graduate School of Science; Osaka University; Machikaneyama 1-1, Toyonaka 560-0043 Osaka Japan
- Core for Medicine and Science Collaborative Research and Education; Project Research Center for Fundamental Science; Osaka University; Osaka Japan
| |
Collapse
|
7
|
Sharma S, Shekhar S, Sharma B, Jain P. Decoding glycans: deciphering the sugary secrets to be coherent on the implication. RSC Adv 2020; 10:34099-34113. [PMID: 35519023 PMCID: PMC9056758 DOI: 10.1039/d0ra04471g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/23/2020] [Indexed: 12/28/2022] Open
Abstract
Neoteric techniques, skills, and methodological advances in glycobiology and glycochemistry have been instrumental in pertinent discoveries to pave way for a new era in biomedical sciences. Glycans are sugar-based polymers that coat cells and decorate majority of proteins, forming glycoproteins. They are also found deposited in extracellular spaces between cells, attached to soluble signaling molecules, and are key players in several biological processes including regulation of immune responses and cell–cell interactions. Laboratory manipulations of protein, DNA and other macromolecules celebrate the accelerated research in respective fields, but the same seems unlikely for the complex sugar polymers. The structural complex polymers are neither synthesized using a known template nor are dynamically stable with respect to a cell's metabolic rate. What is more, sugar isomers—structurally distinct molecules with the same chemical formula—can be employed to construct varied glycans, but are almost impossible to tell apart based on molecular weight alone. The apparent lack of a glycan alphabet further reflects on an enduring question: how little do we know about the sugars? Evidently, glycan-based therapeutic potentials and glycomimetics are propitious advances for the future that have not been well exploited, and with a few conspicuous anomalies. Here, we contour the most notable contributions to enhance our ability to utilize the complex glycans as therapeutics. Diagnostic strategies concerning recurrent diseases and headways to address the challenges are also discussed. A glycan toolbox for pathogenic and cancerous interventions. The review article sheds light on the sweet secrets of this complex structure.![]()
Collapse
Affiliation(s)
- Shreya Sharma
- Department of Chemistry
- Netaji Subhas University of Technology
- India
| | - Shashank Shekhar
- Department of Chemistry
- Netaji Subhas University of Technology
- India
| | - Bhasha Sharma
- Department of Chemistry
- Netaji Subhas University of Technology
- India
| | - Purnima Jain
- Department of Chemistry
- Netaji Subhas University of Technology
- India
| |
Collapse
|
8
|
Singh RS, Walia AK. Purification of a potent mitogenic homodimeric Penicillium griseoroseum lectin and its characterisation. J Basic Microbiol 2019; 59:1238-1247. [PMID: 31613018 DOI: 10.1002/jobm.201900428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/14/2019] [Accepted: 09/29/2019] [Indexed: 11/08/2022]
Abstract
Penicillium griseoroseum lectin was 80-fold purified by successive DEAE Sepharose anion exchange and Sephadex G-100 gel permeation chromatography. P. griseoroseum lectin exhibited haemagglutination activity towards protease-treated rabbit erythrocytes. It showed specificity towards various carbohydrates such as d-mannose, N-acetyl-d-glucosamine, mucins, and so forth. P. griseoroseum lectin was found as a glycoprotein with glycan content of 4.33%. Purified P. griseoroseum lectin is homodimeric having a molecular mass of 57 kDa with subunit molecular mass of 28.6 kDa. Haemagglutination activity of purified P. griseoroseum lectin was completely stable from 25°C to 35°C at a pH range of 6-7.5. Lectin activity was not influenced by divalent metal ions and denaturants. P. griseoroseum lectin manifested mitogenicity towards mice splenocytes and activity reached a peak at 75 μg/ml of lectin concentration. P. griseoroseum lectin in microgram concentrations stimulated proliferation of mice splenocytes. Thus, P. griseoroseum lectin exhibits potential mitogenicity, which can be exploited for further biomedical applications.
Collapse
Affiliation(s)
- Ram S Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, India
| | - Amandeep K Walia
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, India
| |
Collapse
|
9
|
Pfister HB, Kelly M, Qadri F, Ryan ET, Kováč P. Synthesis of glycocluster-containing conjugates for a vaccine against cholera. Org Biomol Chem 2019; 17:4049-4060. [DOI: 10.1039/c9ob00368a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The glycocluster-containing conjugates for a vaccine against cholera showed immunoreactivity comparable to conventional conjugates.
Collapse
Affiliation(s)
| | - Meagan Kelly
- Division of infectious Diseases
- Massachusetts General Hospital
- Boston
- USA
| | - Firdausi Qadri
- International Center for Diarrhoeal Disease Research (icddr
- b)
- Dhaka
- Bangladesh
| | - Edward T. Ryan
- Division of infectious Diseases
- Massachusetts General Hospital
- Boston
- USA
- Department of Medicine
| | - Pavol Kováč
- NIDDK
- LBC
- National Institutes of Health
- Bethesda
- USA
| |
Collapse
|
10
|
Breitenbach Barroso Coelho LC, Marcelino Dos Santos Silva P, Felix de Oliveira W, de Moura MC, Viana Pontual E, Soares Gomes F, Guedes Paiva PM, Napoleão TH, Dos Santos Correia MT. Lectins as antimicrobial agents. J Appl Microbiol 2018; 125:1238-1252. [PMID: 30053345 DOI: 10.1111/jam.14055] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 06/23/2018] [Accepted: 07/15/2018] [Indexed: 12/24/2022]
Abstract
The resistance of micro-organisms to antimicrobial agents has been a challenge to treat animal and human infections, and for environmental control. Lectins are natural proteins and some are potent antimicrobials through binding to carbohydrates on microbial surfaces. Oligomerization state of lectins can influence their biological activity and maximum binding capacity; the association among lectin polypeptide chains can alter the carbohydrate-lectin binding dissociation rate constants. Antimicrobial mechanisms of lectins include the pore formation ability, followed by changes in the cell permeability and latter, indicates interactions with the bacterial cell wall components. In addition, the antifungal activity of lectins is associated with the chitin-binding property, resulting in the disintegration of the cell wall or the arrest of de novo synthesis from the cell wall during fungal development or division. Quorum sensing is a cell-to-cell communication process that allows interspecies and interkingdom signalling which coordinate virulence genes; antiquorum-sensing therapies are described for animal and plant lectins. This review article, among other approaches, evaluates lectins as antimicrobials.
Collapse
Affiliation(s)
| | | | - W Felix de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - M C de Moura
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - E Viana Pontual
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - F Soares Gomes
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, Brazil
| | - P M Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - T H Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - M T Dos Santos Correia
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
11
|
Camacho E, Casadevall A. Cryptococcal Traits Mediating Adherence to Biotic and Abiotic Surfaces. J Fungi (Basel) 2018; 4:jof4030088. [PMID: 30060601 PMCID: PMC6162697 DOI: 10.3390/jof4030088] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 01/22/2023] Open
Abstract
Several species in the genus Cryptococcus are facultative intracellular pathogens capable of causing disease associated with high mortality and morbidity in humans. These fungi interact with other organisms in the soil, and these interactions may contribute to the development of adaptation mechanisms that function in virulence by promoting fungal survival in animal hosts. Fungal adhesion molecules, also known as adhesins, have been classically considered as cell-surface or secreted proteins that play critical roles in microbial pathogenesis or in biofilm formation as structural components. Pathogenic Cryptococcus spp. differ from other pathogenic yeasts in having a polysaccharide capsule that covers the cell wall surface and precludes interactions of those structures with host cell receptors. Hence, pathogenic Cryptococcus spp. use unconventional tools for surface attachment. In this essay, we review the unique traits and mechanisms favoring adhesion of Cryptococcus spp. to biotic and abiotic surfaces. Knowledge of the traits that mediate adherence could be exploited in the development of therapeutic, biomedical, and/or industrial products.
Collapse
Affiliation(s)
- Emma Camacho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe St Room E5132, Baltimore, MD 21205, USA.
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe St Room E5132, Baltimore, MD 21205, USA.
| |
Collapse
|