1
|
Boardman ER, Palmer T, Alcock F. Interbacterial competition mediated by the type VIIb secretion system. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001420. [PMID: 38116759 PMCID: PMC10765036 DOI: 10.1099/mic.0.001420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Successful occupancy of a given niche requires the colonising bacteria to interact extensively with the biotic and abiotic environment, including other resident microbes. Bacteria have evolved a range of protein secretion machines for this purpose with eleven such systems identified to date. The type VIIb secretion system (T7SSb) is utilised by Bacillota to secrete a range of protein substrates, including antibacterial toxins targeting closely related strains, and the system as a whole has been implicated in a range of activities such as iron acquisition, intercellular signalling, host colonisation and virulence. This review covers the components and secretion mechanism of the T7SSb, the substrates of these systems and their roles in Gram-positive bacteria, with a focus on interbacterial competition.
Collapse
Affiliation(s)
- Eleanor R. Boardman
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Tracy Palmer
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Felicity Alcock
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
2
|
The Antibacterial Type VII Secretion System of Bacillus subtilis: Structure and Interactions of the Pseudokinase YukC/EssB. mBio 2022; 13:e0013422. [PMID: 36154281 PMCID: PMC9600267 DOI: 10.1128/mbio.00134-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Type VIIb secretion systems (T7SSb) were recently proposed to mediate different aspects of Firmicutes physiology, including bacterial pathogenicity and competition. However, their architecture and mechanism of action remain largely obscure. Here, we present a detailed analysis of the T7SSb-mediated bacterial competition in Bacillus subtilis, using the effector YxiD as a model for the LXG secreted toxins. By systematically investigating protein-protein interactions, we reveal that the membrane subunit YukC contacts all T7SSb components, including the WXG100 substrate YukE and the LXG effector YxiD. YukC’s crystal structure shows unique features, suggesting an intrinsic flexibility that is required for T7SSb antibacterial activity. Overall, our results shed light on the role and molecular organization of the T7SSb and demonstrate the potential of B. subtilis as a model system for extensive structure-function studies of these secretion machineries.
Collapse
|
3
|
Tran HKR, Grebenc DW, Klein TA, Whitney JC. Bacterial type VII secretion: An important player in host-microbe and microbe-microbe interactions. Mol Microbiol 2021; 115:478-489. [PMID: 33410158 DOI: 10.1111/mmi.14680] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/19/2022]
Abstract
Type VII secretion systems (T7SSs) are poorly understood protein export apparatuses found in mycobacteria and many species of Gram-positive bacteria. To date, this pathway has predominantly been studied in Mycobacterium tuberculosis, where it has been shown to play an essential role in virulence; however, much less studied is an evolutionarily divergent subfamily of T7SSs referred to as the T7SSb. The T7SSb is found in the major Gram-positive phylum Firmicutes where it was recently shown to target both eukaryotic and prokaryotic cells, suggesting a dual role for this pathway in host-microbe and microbe-microbe interactions. In this review, we compare the current understanding of the molecular architectures and substrate repertoires of the well-studied mycobacterial T7SSa systems to that of recently characterized T7SSb pathways and highlight how these differences may explain the observed biological functions of this understudied protein export machine.
Collapse
Affiliation(s)
- Hiu-Ki R Tran
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Dirk W Grebenc
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Timothy A Klein
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - John C Whitney
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.,David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
4
|
Klein TA, Grebenc DW, Gandhi SY, Shah VS, Kim Y, Whitney JC. Structure of the Extracellular Region of the Bacterial Type VIIb Secretion System Subunit EsaA. Structure 2020; 29:177-185.e6. [PMID: 33238147 DOI: 10.1016/j.str.2020.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/17/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022]
Abstract
Gram-positive bacteria use type VII secretion systems (T7SSs) to export effector proteins that manipulate the physiology of nearby prokaryotic and eukaryotic cells. Several mycobacterial T7SSs have established roles in virulence. By contrast, the genetically distinct T7SSb pathway found in Firmicutes bacteria more often functions to mediate bacterial competition. A lack of structural information on the T7SSb has limited the understanding of effector export by this protein secretion apparatus. Here, we present the 2.4 Å crystal structure of the extracellular region of the T7SSb subunit EsaA from Streptococcus gallolyticus. Our structure reveals that homodimeric EsaA is an elongated, arrow-shaped protein with a surface-accessible "tip", which in some species of bacteria serves as a receptor for lytic bacteriophages. Because it is the only T7SSb subunit large enough to traverse the peptidoglycan layer of Firmicutes, we propose that EsaA plays a critical role in transporting effectors across the entirety of the Gram-positive cell envelope.
Collapse
Affiliation(s)
- Timothy A Klein
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Dirk W Grebenc
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Shil Y Gandhi
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Vraj S Shah
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Youngchang Kim
- Structural Biology Center, X-ray Science, Argonne National Laboratory, Argonne, IL, USA
| | - John C Whitney
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada; David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
5
|
Mietrach N, Schlosser A, Geibel S. An extracellular domain of the EsaA membrane component of the type VIIb secretion system: expression, purification and crystallization. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2019; 75:725-730. [PMID: 31797813 PMCID: PMC6891578 DOI: 10.1107/s2053230x1901495x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/05/2019] [Indexed: 11/20/2022]
Abstract
The biophysical characterization and crystallization of an extracellular domain of the EsaA membrane component of the type VIIb secretion system is described. The membrane protein EsaA is a conserved component of the type VIIb secretion system. Limited proteolysis of purified EsaA from Staphylococcus aureus USA300 identified a stable 48 kDa fragment, which was mapped by fingerprint mass spectrometry to an uncharacterized extracellular segment of EsaA. Analysis by circular dichroism spectroscopy showed that this fragment folds into a single stable domain made of mostly α-helices with a melting point of 34.5°C. Size-exclusion chromatography combined with multi-angle light scattering indicated the formation of a dimer of the purified extracellular domain. Octahedral crystals were grown in 0.2 M ammonium citrate tribasic pH 7.0, 16% PEG 3350 using the hanging-drop vapor-diffusion method. Diffraction data were analyzed to 4.0 Å resolution, showing that the crystals belonged to the enantiomorphic tetragonal space groups P41212 or P43212, with unit-cell parameters a = 197.5, b = 197.5, c = 368.3 Å, α = β = γ = 90°.
Collapse
Affiliation(s)
- Nicole Mietrach
- Institute for Molecular Infection Biology, Julius-Maximilians-University Würzburg, Josef Schneider Strasse 2, 97080 Würzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, Julius-Maximilians-University Würzburg, Josef Schneider Strasse 2, 97080 Würzburg, Germany
| | - Sebastian Geibel
- Institute for Molecular Infection Biology, Julius-Maximilians-University Würzburg, Josef Schneider Strasse 2, 97080 Würzburg, Germany
| |
Collapse
|