1
|
Sun Q, Cui R, Zhao Y. Regional aroma characteristics of spontaneously fermented Cabernet Sauvignon wines produced from seven sub-regions in Shangri-La of China. Sci Rep 2024; 14:24566. [PMID: 39427107 PMCID: PMC11490552 DOI: 10.1038/s41598-024-76353-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
Shangri-La is a promising wine region in China, which has great potential for producing high-quality wines with distinctive regional characteristics. In this work, the aroma properties of spontaneously fermented Cabernet Sauvignon wines produced from seven sub-regions of Shangri-La (Adong, Liutongjiang, Sinong, Xidang, and Nitong from Lancang River basin; Benzilan and Dari from Jinsha River Basin) were comprehensively analyzed using the headspace micro-extraction with gas chromatography-mass spectrometry, odor activity values, and olfactory evaluation. Results showed that a total of 59 volatiles belonging to seven groups were identified and quantified in all regional wines, with alcohols constituting the most abundant group, followed by esters and volatile fatty acids. Based on their odor activity values, six alcohols, seven esters, two terpenes, one C13-norisoprenoids, and three volatile fatty acids were identified as key volatiles which significantly contribute to the aroma of these wines. Principal component analysis showed the distinct compositions of these 19 key volatiles among the seven regional wines. Olfactory evaluation revealed certain differences in aroma profiles, particularly "Tropical fruit", "Dried fruit", "Vegetal", and "Sweet" among them. This study enhances our understanding on the unique terroir flavors of Shangri-La wines and is helpful for further producing high-quality wines with regional characteristics.
Collapse
Affiliation(s)
- Qingyang Sun
- College of Food Science, Hebei Normal University of Science & Technology, Qinhuangdao, 066600, China
- Hebei Fruit Processing Technology Innovation Center, Hebei Normal University of Science & Technology, Qinhuangdao, 066600, China
| | - Ruiguo Cui
- College of Food Science, Hebei Normal University of Science & Technology, Qinhuangdao, 066600, China
| | - Yue Zhao
- College of Food Science, Hebei Normal University of Science & Technology, Qinhuangdao, 066600, China.
| |
Collapse
|
2
|
Shibayama K, Kondo K, Otoguro M. Yeast Diversity in Wine Grapes from Japanese Vineyards and Enological Traits of Indigenous Saccharomyces cerevisiae Strains. Microorganisms 2024; 12:1769. [PMID: 39338444 PMCID: PMC11433644 DOI: 10.3390/microorganisms12091769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
Japan has numerous vineyards with distinct geographical and climatic conditions. To the best of our knowledge, there is no comprehensive analysis of the diversity of yeasts associated with wine grapes from Japan. This study aimed to determine yeast diversity in wine grapes from four wine-producing regions in Japan and to evaluate the physicochemical characteristics of wines produced with indigenous Saccharomyces cerevisiae strains isolated from two regions. A total of 2648 strains were isolated from nine wine grape samples. MALDI-TOF MS and 26S rDNA sequence analyses revealed that the strains belonged to 21 non-Saccharomyces yeasts and 1 Saccharomyces yeast (S. cerevisiae). Non-Saccharomyces yeasts were found in high quantities and were highly distributed among the wine grape samples. Differences in the distribution of the identified yeast species were noted among the different wine grape varieties and regions. Indigenous S. cerevisiae strains of different genotypes from different regions exhibit distinct physiological traits. Our findings are expected to enhance our understanding of the local yeasts associated with Japanese vineyards and contribute to obtaining cultures that can provide region-specific organoleptic characteristics to local wines produced in Japan.
Collapse
Affiliation(s)
- Kaito Shibayama
- The Institute of Enology and Viticulture, University of Yamanashi, 1-13-1 Kitashin, Kofu 400-0005, Japan
| | - Kozue Kondo
- The Institute of Enology and Viticulture, University of Yamanashi, 1-13-1 Kitashin, Kofu 400-0005, Japan
| | - Misa Otoguro
- The Institute of Enology and Viticulture, University of Yamanashi, 1-13-1 Kitashin, Kofu 400-0005, Japan
| |
Collapse
|
3
|
van Wyk N, Badura J, von Wallbrunn C, Pretorius IS. Exploring future applications of the apiculate yeast Hanseniaspora. Crit Rev Biotechnol 2024; 44:100-119. [PMID: 36823717 DOI: 10.1080/07388551.2022.2136565] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/16/2022] [Accepted: 09/24/2022] [Indexed: 02/25/2023]
Abstract
As a metaphor, lemons get a bad rap; however the proverb 'if life gives you lemons, make lemonade' is often used in a motivational context. The same could be said of Hanseniaspora in winemaking. Despite its predominance in vineyards and grape must, this lemon-shaped yeast is underappreciated in terms of its contribution to the overall sensory profile of fine wine. Species belonging to this apiculate yeast are known for being common isolates not just on grape berries, but on many other fruits. They play a critical role in the early stages of a fermentation and can influence the quality of the final product. Their deliberate addition within mixed-culture fermentations shows promise in adding to the complexity of a wine and thus provide sensorial benefits. Hanseniaspora species are also key participants in the fermentations of a variety of other foodstuffs ranging from chocolate to apple cider. Outside of their role in fermentation, Hanseniaspora species have attractive biotechnological possibilities as revealed through studies on biocontrol potential, use as a whole-cell biocatalyst and important interactions with Drosophila flies. The growing amount of 'omics data on Hanseniaspora is revealing interesting features of the genus that sets it apart from the other Ascomycetes. This review collates the fields of research conducted on this apiculate yeast genus.
Collapse
Affiliation(s)
- Niël van Wyk
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Jennifer Badura
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany
| | - Christian von Wallbrunn
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany
| | - Isak S Pretorius
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| |
Collapse
|
4
|
Gerard LM, Corrado MB, Davies CV, Soldá CA, Dalzotto MG, Esteche S. Isolation and identification of native yeasts from the spontaneous fermentation of grape musts. Arch Microbiol 2023; 205:302. [PMID: 37550458 DOI: 10.1007/s00203-023-03646-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Recently, there has been growing interest in the characterization of native yeasts for their use in production of wines with regional characteristics. This study aimed to investigate Saccharomyces and non-Saccharomyces yeasts present in the spontaneous fermentation of Tannat and Marselan grape musts collected from Concordia (Entre Ríos, Argentina) over 2019, 2020, and 2021 vintages. The evolution of these fermentative processes was carried out by measuring total soluble solids, total acidity, volatile acidity, pH, ethanol concentration, and total carbon content. Isolated Saccharomyces and non-Saccharomyces yeasts were identified based on colony morphology in WL medium, 5.8S-ITS-RFLP analysis, and 26S rDNA D1/D2 gene sequencing. Two hundred and ten yeast colonies were isolated and identified as Pichia kudriavzevii, Saccharomyces cerevisiae, Hanseniaspora uvarum, Metschnikowia pulcherrima, Candida albicans, Candida parapsilosis, Pichia occidentalis, Pichia bruneiensis, Hanseniaspora opuntiae, Issatchenkia terricola, and Hanseniaspora vineae. P. kudriavzevii isolated from all vintages was associated with the spontaneous fermentation of grape musts from the Concordia region.
Collapse
Affiliation(s)
- Liliana Mabel Gerard
- Laboratorio de Microbiología y Biotecnología de Alimentos, Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Monseñor Tavella 1450, 3200, Concordia, Entre Ríos, Argentina.
| | - María Belén Corrado
- Laboratorio de Microbiología y Biotecnología de Alimentos, Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Monseñor Tavella 1450, 3200, Concordia, Entre Ríos, Argentina
| | - Cristina Verónica Davies
- Laboratorio de Microbiología y Biotecnología de Alimentos, Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Monseñor Tavella 1450, 3200, Concordia, Entre Ríos, Argentina
| | - Carina Alejandra Soldá
- Laboratorio de Microbiología y Biotecnología de Alimentos, Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Monseñor Tavella 1450, 3200, Concordia, Entre Ríos, Argentina
| | - María Gabriela Dalzotto
- Laboratorio de Microbiología y Biotecnología de Alimentos, Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Monseñor Tavella 1450, 3200, Concordia, Entre Ríos, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Concordia, Argentina
| | - Sofía Esteche
- Laboratorio de Microbiología y Biotecnología de Alimentos, Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Monseñor Tavella 1450, 3200, Concordia, Entre Ríos, Argentina
| |
Collapse
|
5
|
Serafino G, Di Gianvito P, Giacosa S, Škrab D, Cocolin L, Englezos V, Rantsiou K. Survey of the yeast ecology of dehydrated grapes and strain selection for wine fermentation. Food Res Int 2023; 170:113005. [PMID: 37316074 DOI: 10.1016/j.foodres.2023.113005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
In this study we investigated the yeast population present on partially dehydrated Nebbiolo grapes destined for 'Sforzato di Valtellina', with the aim to select indigenous starters suitable for the production of this wine. Yeasts were enumerated, isolated, and identified by molecular methods (5.8S-ITS-RFLP and D1/D2 domain sequencing). A genetic, physiological (ethanol and sulphur dioxide tolerance, potentially useful enzymatic activities, hydrogen sulphide production, adhesive properties, and killer activity) and oenological (laboratory pure micro-fermentations) characterization was also carried out. Based on relevant physiological features, seven non-Saccharomyces strains were chosen for laboratory-scale fermentations, either in pure or in mixed-culture (simultaneous and sequential inoculum) with a commercial Saccharomyces cerevisiae strain. Finally, the best couples and inoculation strategy were further tested in mixed fermentations in winery. In both laboratory and winery, microbiological and chemical analyses were conducted during fermentation. The most abundant species on grapes were Hanseniaspora uvarum (27.4 % of the isolates), followed by Metschnikowia spp. (21.0 %) and Starmerella bacillaris (12.9 %). Technological characterization highlighted several inter- and intra-species differences. The best oenological aptitude was highlighted for species Starm. bacillaris, Metschnikowia spp., Pichia kluyveri and Zygosaccharomyces bailli. The best fermentation performances in laboratory-scale fermentations were found for Starm. bacillaris and P. kluyveri, due to their ability to reduce ethanol (-0.34 % v/v) and enhance glycerol production (+0.46 g/L). This behavior was further confirmed in winery. Results of this study contribute to the knowledge of yeast communities associated with a specific environment, like those of Valtellina wine region.
Collapse
Affiliation(s)
- Gabriele Serafino
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Paola Di Gianvito
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Simone Giacosa
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Domen Škrab
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Luca Cocolin
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Vasileios Englezos
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy.
| | - Kalliopi Rantsiou
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| |
Collapse
|
6
|
The Use of Hanseniaspora occidentalis in a Sequential Must Inoculation to Reduce the Malic Acid Content of Wine. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146919] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this study, the impact of the apiculate yeast Hanseniaspora occidentalis as a co-partner with Saccharomyces cerevisiae was investigated in a sequential-type mixed-culture fermentation of Muscaris grape must. As with other fermentation trials using Hanseniaspora strains, a significant increase in ethyl acetate was observed, but most intriguing was the almost complete abolition of malic acid (from 2.0 g/L to 0.1 g/L) in the wine. Compared to the pure S. cerevisiae inoculum, there was also a marked increase in the concentrations of the other acetate esters. Modulation of some of the varietal elements, such as rose oxide, was also observed. This work shows the promising use of H. occidentalis in a mixed-culture must fermentation, especially in the acid modulation of fruit juice matrices.
Collapse
|
7
|
Zhao Y, Sun Q, Tian B, Zhu S, Du F, Mao R, Li S, Liu L, Zhu Y. Evaluation of Four Indigenous Non-Saccharomyces Yeasts Isolated from the Shangri-La Wine Region (China) for Their Fermentation Performances and Aroma Compositions in Synthetic Grape Juice Fermentation. J Fungi (Basel) 2022; 8:jof8020146. [PMID: 35205900 PMCID: PMC8879568 DOI: 10.3390/jof8020146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated the fermentation performances and aroma compositions of synthetic grape juice that was fermented by four indigenous non-Saccharomyces yeast isolates that were obtained from the Shangri-La wine region (China): Meyerozyma guilliermondii (AD-58), Saccharomycopsis vini (BZL-28), Saturnispora diversa (BZL-11), and Wickerhamomyces anomalus (DR-110), in comparison to those of Saccharomyces cerevisiae (EC1118). The four indigenous non-Saccharomyces yeasts showed a lower fermentative capacity and a lower conversion rate of sugar to alcohol, but a higher yield of volatile acidity. W. anomalus (DR-110) had a greater ability to produce numerous esters and short-chain fatty acids and the representative flavors of its fermented medium were fruity and fatty. Sac. vini (BZL-28), interestingly, exhibited great capacity in the formation of many monoterpenes, particularly (Z)-β-ocimene, E-β-ocimene, linalool, citral, and geraniol and its fermented medium was characterized by a strong fruity (citrus-like) and floral flavor. M. guilliermondii (AD-58) and Sat. diversa (BZL-11) only mildly affected the aroma profiles of their resultant fermented media, since the concentrations of most of the volatiles that were produced by these two isolates were much lower than their sensory thresholds. The four indigenous non-Saccharomyces yeasts exhibited distinctive fermentation performances and aroma production behaviors. In particularly, W. anomalus (DR-110) and Sac. vini (BZL-28) have shown good potential in enhancing the aromas and complexity of wine.
Collapse
Affiliation(s)
- Yue Zhao
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (Y.Z.); (Q.S.); (S.Z.); (F.D.)
- College of Food Science, Hebei Normal University of Science & Technology, Qinhuangdao 066600, China
| | - Qingyang Sun
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (Y.Z.); (Q.S.); (S.Z.); (F.D.)
| | - Bin Tian
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand;
| | - Shusheng Zhu
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (Y.Z.); (Q.S.); (S.Z.); (F.D.)
| | - Fei Du
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (Y.Z.); (Q.S.); (S.Z.); (F.D.)
| | - Ruzhi Mao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (R.M.); (L.L.)
- University Engineering Research Center for Grape & Wine of Yunan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Su Li
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China;
| | - Lijing Liu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (R.M.); (L.L.)
- University Engineering Research Center for Grape & Wine of Yunan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Yifan Zhu
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (Y.Z.); (Q.S.); (S.Z.); (F.D.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (R.M.); (L.L.)
- University Engineering Research Center for Grape & Wine of Yunan Province, Yunnan Agricultural University, Kunming 650201, China
- Correspondence:
| |
Collapse
|
8
|
Zhang J, Shang Y, Chen J, Brunel B, Peng S, Li S, Wang E. Diversity of non-Saccharomyces yeasts of grape berry surfaces from representative Cabernet Sauvignon vineyards in Henan Province, China. FEMS Microbiol Lett 2021; 368:6424895. [PMID: 34755861 DOI: 10.1093/femsle/fnab142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Non-Saccharomyces yeasts are important players during winemaking and may come from grapes grown in vineyards. To study the diversity of non-Saccharomyces yeasts on surface grape berries, 433 strains were isolated from different Cabernet Sauvignon vineyards grown in Henan Province. Our results demonstrated that these strains were classified into 16 morphotypes according to their growth morphology on Wallerstein Laboratory agar medium, and were identified as seven species from four genera: Hanseniaspora opuntiae, Hanseniaspora vineae, Hanseniaspora uvarum, Pichia occidentalis, Pichia kluyveri, Issatchenkia terricola and Saturnispora diversa based on a series of molecular biological experiments. Hanseniaspora opuntiae was obtained from all sampling sites except Changyuan County, while Pichia kluyveri and Saturnispora diversa were only found in sites of Zhengzhou Grape Resource Garden and Minquan County, respectively. The site Minquan was home of the greatest species richness while only one single species (Hanseniaspora opuntiae) was detected at NAPA winery from Zhengzhou or at Anyang County. Finally, this study suggested that the geographic distribution and diversity of non-Saccharomyces yeast populations on Cabernet Sauvignon grape berries were likely to be determined by a combination of grape varieties and environmental factors.
Collapse
Affiliation(s)
- Junjie Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, 450000, P. R. China.,Collaborative Innovation Center for Food Production and Safety of Henan Province, Zhengzhou 450002, Henan Province, P. R. China
| | - Yimin Shang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, 450000, P. R. China
| | - Jinyong Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan Province, P. R. China
| | - Brigitte Brunel
- LSTM, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Shanshan Peng
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, 450000, P. R. China
| | - Shuo Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, 450000, P. R. China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, C.P. 11340, Ciudad de México, México
| |
Collapse
|
9
|
Non-Saccharomyces yeasts as bioprotection in the composition of red wine and in the reduction of sulfur dioxide. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Affiliation(s)
- Franck Carbonero
- Department of Nutrition and Exercise Physiology, Elson Floyd School of Medicine, Washington State University-Spokane, Spokane, WA, 99202, USA.
| | - Gary Strobel
- Department of Plant Sciences, Montana State University, Bozeman, MT, 59717, USA
| |
Collapse
|
11
|
Zhao Y, Sun Q, Zhu S, Du F, Mao R, Liu L, Tian B, Zhu Y. Biodiversity of non-Saccharomyces yeasts associated with spontaneous fermentation of Cabernet Sauvignon wines from Shangri-La wine region, China. Sci Rep 2021; 11:5150. [PMID: 33664299 PMCID: PMC7933366 DOI: 10.1038/s41598-021-83216-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/27/2021] [Indexed: 01/06/2023] Open
Abstract
Shangri-La is a wine region that has the highest altitude vineyards in China. This is the first study investigated the biodiversity of non-Saccharomyces yeasts associated with spontaneous fermentation of Cabernet Sauvignon wines produced from two sub-regions (Lancang River and Jinsha River) of Shangri-La. The culturable yeasts were preliminarily classified based on their colonial morphology on the Wallerstein Laboratory nutrient agar plates. Yeast species were identified by the sequencing of the 26S rRNA D1/D2 region and the 5.8S rRNA ITS region. Twenty-five non-Saccharomyces yeast species belonging to sixteen genera were isolated and identified in Shangri-La wine region. Candida, Hanseniaspora, Pichia, and Starmerella were found in both sub-regions, but the Lancang River showed more diverse yeast species than the Jinsha River. Shangri-La not only exhibited high diversity of non-Saccharomyces yeasts, and furthermore, seven species of non-Saccharomyces yeasts were exclusively found in this region, including B. bruxellensis, D. hansenii, M. guilliermondii, S. vini, S. diversa, T. delbrueckii and W. anomalus, which might play an important role in distinctive regional wine characteristics. This study provide a relatively comprehensive analysis of indigenous non-Saccharomyces yeasts associated with Cabernet Sauvignon from Shangri-La, and has significance for exploring 'microbial terroir' of wine regions in China.
Collapse
Affiliation(s)
- Yue Zhao
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Qingyang Sun
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Shusheng Zhu
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Fei Du
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Ruzhi Mao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Lijing Liu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.,University Engineering Research Center for Grape and Wine of Yunan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Bin Tian
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, 7647, New Zealand.
| | - Yifan Zhu
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China. .,College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China. .,University Engineering Research Center for Grape and Wine of Yunan Province, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
12
|
Pietrafesa A, Capece A, Pietrafesa R, Bely M, Romano P. Saccharomyces cerevisiae and Hanseniaspora uvarum mixed starter cultures: Influence of microbial/physical interactions on wine characteristics. Yeast 2020; 37:609-621. [PMID: 32567694 DOI: 10.1002/yea.3506] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/27/2020] [Accepted: 06/18/2020] [Indexed: 01/18/2023] Open
Abstract
The growing trend in the wine industry is the revaluation of the role of non-Saccharomyces yeasts, promoting the use of these yeasts in association with Saccharomyces cerevisiae. Non-Saccharomyces yeasts contribute to improve wine complexity and organoleptic composition. However, the use of mixed starters needs to better understand the effect of the interaction between these species during alcoholic fermentation. The aim of this study is to evaluate the influence of mixed starter cultures, composed by combination of different S. cerevisiae and Hanseniaspora uvarum strains, on wine characteristics and to investigate the role of cell-to-cell contact on the metabolites produced during alcoholic fermentation. In the first step, three H. uvarum and two S. cerevisiae strains, previously selected, were tested during mixed fermentations in natural red grape must in order to evaluate yeast population dynamics during inoculated fermentation and influence of mixed starter cultures on wine quality. One selected mixed starter was tested in a double-compartment fermentor in order to compare mixed inoculations of S. cerevisiae/H. uvarum with and without physical separation. Our results revealed that physical contact between S. cerevisiae and H. uvarum affected the viability of H. uvarum strain, influencing also the metabolic behaviour of the strains. Although different researches are available on the role of cell-to-cell contact-mediated interactions on cell viability of the strains included in the mixed starter, to our knowledge, very few studies have evaluated the influence of cell-to-cell contact on the chemical characteristics of wine.
Collapse
Affiliation(s)
- Angela Pietrafesa
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - Angela Capece
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - Rocchina Pietrafesa
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - Marina Bely
- UR Oenologie EA 4577, USC 1366 INRAE, Bordeaux INP, Université de Bordeaux, Villenave d'Ornon, France
| | - Patrizia Romano
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| |
Collapse
|
13
|
Vicente J, Ruiz J, Belda I, Benito-Vázquez I, Marquina D, Calderón F, Santos A, Benito S. The Genus Metschnikowia in Enology. Microorganisms 2020; 8:microorganisms8071038. [PMID: 32668690 PMCID: PMC7409183 DOI: 10.3390/microorganisms8071038] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/30/2020] [Accepted: 07/04/2020] [Indexed: 01/09/2023] Open
Abstract
Over the last decade, several non-Saccharomyces species have been used as an alternative yeast for producing wines with sensorial properties that are distinctive in comparison to those produced using only Saccharomycescerevisiae as the classical inoculum. Among the non-Saccharomyces wine yeasts, Metschnikowia is one of the most investigated genera due to its widespread occurrence and its impact in winemaking, and it has been found in grapevine phyllospheres, fruit flies, grapes, and wine fermentations as being part of the resident microbiota of wineries and wine-making equipment. The versatility that allows some Metschnikowia species to be used for winemaking relies on an ability to grow in combination with other yeast species, such as S. cerevisiae, during the first stages of wine fermentation, thereby modulating the synthesis of secondary metabolites during fermentation in order to improve the sensory profile of the wine. Metschnikowia exerts a moderate fermentation power, some interesting enzymatic activities involving aromatic and color precursors, and potential antimicrobial activity against spoilage yeasts and fungi, resulting in this yeast being considered an interesting tool for use in the improvement of wine quality. The abovementioned properties have mostly been determined from studies on Metschnikowia pulcherrima wine strains. However, M. fructicola and M. viticola have also recently been studied for winemaking purposes.
Collapse
Affiliation(s)
- Javier Vicente
- Unit of Microbiology, Department of Genetics, Physiology and Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain; (J.V.); (J.R.); (I.B.); (I.B.-V.); (D.M.); (A.S.)
| | - Javier Ruiz
- Unit of Microbiology, Department of Genetics, Physiology and Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain; (J.V.); (J.R.); (I.B.); (I.B.-V.); (D.M.); (A.S.)
| | - Ignacio Belda
- Unit of Microbiology, Department of Genetics, Physiology and Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain; (J.V.); (J.R.); (I.B.); (I.B.-V.); (D.M.); (A.S.)
| | - Iván Benito-Vázquez
- Unit of Microbiology, Department of Genetics, Physiology and Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain; (J.V.); (J.R.); (I.B.); (I.B.-V.); (D.M.); (A.S.)
| | - Domingo Marquina
- Unit of Microbiology, Department of Genetics, Physiology and Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain; (J.V.); (J.R.); (I.B.); (I.B.-V.); (D.M.); (A.S.)
| | - Fernando Calderón
- Department of Chemistry and Food Technology, Polytechnic University of Madrid, Ciudad Universitaria S/N, 28040 Madrid, Spain;
| | - Antonio Santos
- Unit of Microbiology, Department of Genetics, Physiology and Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain; (J.V.); (J.R.); (I.B.); (I.B.-V.); (D.M.); (A.S.)
| | - Santiago Benito
- Department of Chemistry and Food Technology, Polytechnic University of Madrid, Ciudad Universitaria S/N, 28040 Madrid, Spain;
- Correspondence: ; Tel.: +34-913363984
| |
Collapse
|
14
|
Takaya M, Ohwada T, Oda Y. Characterization of the Yeast Hanseniaspora vineae Isolated from the Wine Grape ‘Yamasachi’ and Its Use for Bread Making. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2019. [DOI: 10.3136/fstr.25.835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Masahiro Takaya
- The Tokachi Foundation
- Graduate School of Animal and Veterinary Sciences and Agriculture, Obihiro University of Agriculture and Veterinary Medicine
| | - Takuji Ohwada
- Graduate School of Animal and Veterinary Sciences and Agriculture, Obihiro University of Agriculture and Veterinary Medicine
- Department of Life and Agricultural Sciences, Obihiro University of Agriculture and Veterinary Medicine
| | - Yuji Oda
- Department of Life and Agricultural Sciences, Obihiro University of Agriculture and Veterinary Medicine
| |
Collapse
|