1
|
Cai Y, Zhang X. The atypical organization of the luxI/R family genes in AHL-driven quorum-sensing circuits. J Bacteriol 2024; 206:e0043023. [PMID: 38240569 PMCID: PMC10882985 DOI: 10.1128/jb.00430-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
Abstract
Quorum sensing (QS) is an elaborate regulatory mechanism associated with virulence and bacterial adaptation to the changing environment. QS is widespread in Proteobacteria and acts primarily through N-acylhomoserine lactone (AHL) signals. At the core of the AHL-driven QS systems are the AHL synthase gene (luxI family) and its cognate transcriptional regulator gene (luxR family). Several QS systems display one or more genes intervening between the luxI and luxR, in which gene arrangements are notably different due to the relative position and the transcriptional orientation between the essential luxI/R and the genes of location correlation. These adjacent genes may exert a regulatory impact on the primary QS genes or contribute toward an extension of QS regulatory control. In this review, we describe the organization of AHL-driven QS genes based on previous research and specific genome databases and provide new insights into these atypical QS gene arrangements.
Collapse
Affiliation(s)
- Yuyuan Cai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
New temperature-switchable acyl homoserine lactone-regulated expression vector. Appl Microbiol Biotechnol 2023; 107:807-818. [PMID: 36580089 DOI: 10.1007/s00253-022-12341-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/30/2022]
Abstract
Bacterial expression systems play an indispensable role in the biosynthesis of recombinant proteins. Different proteins and the tasks associated with them may require different systems. The purpose of this work is to make an expression vector that allows switching on and off the expression of the target gene during cell incubation. Several expression vectors for use in Escherichia coli cells were developed using elements of the luxR/luxI type quorum sensing system of psychrophilic bacterium Aliivibrio logei. These vectors contain A. logei luxR2 and (optionally) luxI genes and LuxR2-regulated promoter, under the control of which a target gene is intended to be inserted. The synthesis of the target protein depends directly on the temperature: gene expression starts when the temperature drops to 22 °C and stops when it rises to 37 °C, which makes it possible to fix the desired amount of the target protein in the cell. At the same time, the expression of the target gene at a low temperature depends on the concentration of the autoinducer (L-homoserine N-(3-oxohexanoyl)-lactone, AI) in the culture medium in a wide range from 1 nM to 10 μM, which makes it possible to smoothly regulate the rate of target protein synthesis. Presence of luxI in the vector provides the possibility of autoinduction. Constructed expression vectors were tested with gfp, ardA, and ardB genes. At maximum, we obtained the target protein in an amount of up to 33% of the total cellular protein. KEY POINTS: • A. logei quorum sensing system elements were applied in new expression vectors • Expression of target gene is inducible at 22 °C and it is switched off at 37 °C • Target gene expression at 22 °C is tunable by use different AI concentrations.
Collapse
|
3
|
Nocturnal Acidification: A Coordinating Cue in the Euprymna scolopes- Vibrio fischeri Symbiosis. Int J Mol Sci 2022; 23:ijms23073743. [PMID: 35409100 PMCID: PMC8999011 DOI: 10.3390/ijms23073743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 01/27/2023] Open
Abstract
The Vibrio fischeri–Euprymna scolopes symbiosis has become a powerful model for the study of specificity, initiation, and maintenance between beneficial bacteria and their eukaryotic partner. In this invertebrate model system, the bacterial symbionts are acquired every generation from the surrounding seawater by newly hatched squid. These symbionts colonize a specialized internal structure called the light organ, which they inhabit for the remainder of the host’s lifetime. The V. fischeri population grows and ebbs following a diel cycle, with high cell densities at night producing bioluminescence that helps the host avoid predation during its nocturnal activities. Rhythmic timing of the growth of the symbionts and their production of bioluminescence only at night is critical for maintaining the symbiosis. V. fischeri symbionts detect their population densities through a behavior termed quorum-sensing, where they secrete and detect concentrations of autoinducer molecules at high cell density when nocturnal production of bioluminescence begins. In this review, we discuss events that lead up to the nocturnal acidification of the light organ and the cues used for pre-adaptive behaviors that both host and symbiont have evolved. This host–bacterium cross talk is used to coordinate networks of regulatory signals (such as quorum-sensing and bioluminescence) that eventually provide a unique yet stable environment for V. fischeri to thrive and be maintained throughout its life history as a successful partner in this dynamic symbiosis.
Collapse
|
4
|
Bazhenov SV, Scheglova ES, Fomin VV, Zavilgelsky GB, Manukhov IV. Two-Stage Activation of lux Regulon of Psychrophilic Marine Luminescent Bacteria Aliivibrio logei. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Bazhenov S, Melkina O, Fomin V, Scheglova E, Krasnik P, Khrulnova S, Zavilgelsky G, Manukhov I. LitR directly upregulates autoinducer synthesis and luminescence in Aliivibrio logei. PeerJ 2021; 9:e12030. [PMID: 34616599 PMCID: PMC8462370 DOI: 10.7717/peerj.12030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/30/2021] [Indexed: 11/23/2022] Open
Abstract
LitR is a master-regulator of transcription in the ainS/R and luxS/PQ quorum sensing (QS) systems of bacteria from Vibrio and Aliivibrio genera. Here, we for the first time directly investigated the influence of LitR on gene expression in the luxI/R QS system of psychrophilic bacteria Aliivibrio logei. Investigated promoters were fused with Photorhabdus luminescens luxCDABE reporter genes cassette in a heterological system of Escherichia coli cells, litR A. logei was introduced into the cells under control of Plac promoter. LitR has been shown to upregulate genes of autoinducer synthase (luxI), luciferase and reductase (luxCDABE), and this effect doesn’t depend on presence of luxR gene. To a much lesser degree, LitR induces luxR1, but not the luxR2 — the main luxI/R regulator. Enhanced litR expression leads to an increase in a LuxI-autoinducer synthesis and a subsequent LuxR-mediated activation of the luxI/R QS system. Effect of LitR on luxI transcription depends on lux-box sequence in luxI promoter even in absence of luxR (lux-box is binding site of LuxR). The last finding indicates a direct interaction of LitR with the promoter in the lux-box region. Investigation of the effect of LitR A. logei on luxI/R QS systems of mesophilic Aliivibrio fischeri and psychrophilic Aliivibrio salmonicida showed direct luxR-independent upregulation of luxI and luxCDABE genes. To a lesser degree, it induces luxR A. fischeri and luxR1 A. salmonicida. Therefore, we assume that the main role of LitR in cross-interaction of these three QS systems is stimulating the expression of luxI.
Collapse
Affiliation(s)
- Sergey Bazhenov
- Laboratory for Molecular Genetics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Higher School of Economics, Moscow, Russia
| | - Olga Melkina
- State Research Institute of Genetics and Selection of Industrial Microorganisms of the National Research Center "Kurchatov Institute", Moscow, Russia.,State Research Institute of Genetics and Selection of Industrial Microorganisms of the National Research Centre "Kurchatov Institute", Kurchatov Genomic Center, Moscow, Russia
| | - Vadim Fomin
- Laboratory for Molecular Genetics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ekaterina Scheglova
- Laboratory for Molecular Genetics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Pavel Krasnik
- Laboratory for Molecular Genetics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Svetlana Khrulnova
- Laboratory for Molecular Genetics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,National Research Center for Hematology, Moscow, Russia
| | - Gennadii Zavilgelsky
- State Research Institute of Genetics and Selection of Industrial Microorganisms of the National Research Center "Kurchatov Institute", Moscow, Russia
| | - Ilya Manukhov
- Laboratory for Molecular Genetics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Higher School of Economics, Moscow, Russia.,State Research Institute of Genetics and Selection of Industrial Microorganisms of the National Research Center "Kurchatov Institute", Moscow, Russia
| |
Collapse
|
6
|
Bazhenov S, Novoyatlova U, Scheglova E, Fomin V, Khrulnova S, Melkina O, Chistyakov V, Manukhov I. Influence of the luxR Regulatory Gene Dosage and Expression Level on the Sensitivity of the Whole-Cell Biosensor to Acyl-Homoserine Lactone. BIOSENSORS-BASEL 2021; 11:bios11060166. [PMID: 34071046 PMCID: PMC8224577 DOI: 10.3390/bios11060166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022]
Abstract
Aliivibrio fischeri LuxR and Aliivibrio logei LuxR1 and LuxR2 regulatory proteins are quorum sensing transcriptional (QS) activators, inducing promoters of luxICDABEG genes in the presence of an autoinducer (3-oxo-hexanoyl-l-homoserine lactone). In the Aliivibrio cells, luxR genes are regulated by HNS, CRP, LitR, etc. Here we investigated the role of the luxR expression level in LuxI/R QS system functionality and improved the whole-cell biosensor for autoinducer detection. Escherichia coli-based bacterial lux-biosensors were used, in which Photorhabdus luminescensluxCDABE genes were controlled by LuxR-dependent promoters and luxR, luxR1, or luxR2 regulatory genes. We varied either the dosage of the regulatory gene in the cells using additional plasmids, or the level of the regulatory gene expression using the lactose operon promoter. It was shown that an increase in expression level, as well as dosage of the regulatory gene in biosensor cells, leads to an increase in sensitivity (the threshold concentration of AI is reduced by one order of magnitude) and to a two to threefold reduction in response time. The best parameters were obtained for a biosensor with an increased dosage of luxRA. fischeri (sensitivity to 3-oxo-hexanoyl-l-homoserine lactone reached 30–100 pM).
Collapse
Affiliation(s)
- Sergey Bazhenov
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (U.N.); (E.S.); (V.F.); (S.K.); (I.M.)
- Academy of Biology and Biotechnology, Southern Federal University, 344022 Rostov-on-Don, Russia;
- Faculty of Physics, HSE University, 109028 Moscow, Russia
- Correspondence:
| | - Uliana Novoyatlova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (U.N.); (E.S.); (V.F.); (S.K.); (I.M.)
| | - Ekaterina Scheglova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (U.N.); (E.S.); (V.F.); (S.K.); (I.M.)
| | - Vadim Fomin
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (U.N.); (E.S.); (V.F.); (S.K.); (I.M.)
| | - Svetlana Khrulnova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (U.N.); (E.S.); (V.F.); (S.K.); (I.M.)
- National Research Center for Hematology, 125167 Moscow, Russia
| | - Olga Melkina
- State Research Institute of Genetics and Selection of Industrial Microorganisms of the National Research Center “Kurchatov Institute”, 117545 Moscow, Russia;
| | - Vladimir Chistyakov
- Academy of Biology and Biotechnology, Southern Federal University, 344022 Rostov-on-Don, Russia;
| | - Ilya Manukhov
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (U.N.); (E.S.); (V.F.); (S.K.); (I.M.)
- Faculty of Physics, HSE University, 109028 Moscow, Russia
- Federal Research Center of Biological Systems and Agro-technologies of RAS, 460000 Orenburg, Russia
| |
Collapse
|
7
|
Kessenikh A, Gnuchikh E, Bazhenov S, Bermeshev M, Pevgov V, Samoilov V, Shorunov S, Maksimov A, Yaguzhinsky L, Manukhov I. Genotoxic effect of 2,2'-bis(bicyclo[2.2.1] heptane) on bacterial cells. PLoS One 2020; 15:e0228525. [PMID: 32822344 PMCID: PMC7444485 DOI: 10.1371/journal.pone.0228525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/07/2020] [Indexed: 12/30/2022] Open
Abstract
The toxic effect of strained hydrocarbon 2,2'-bis (bicyclo[2.2.1]heptane) (BBH) was studied using whole-cell bacterial lux-biosensors based on Escherichia coli cells in which luciferase genes are transcriptionally fused with stress-inducible promoters. It was shown that BBH has the genotoxic effect causing bacterial SOS response however no alkylating effect has been revealed. In addition to DNA damage, there is an oxidative effect causing the response of OxyR/S and SoxR/S regulons. The most sensitive to BBH lux-biosensor was E. coli pSoxS-lux which reacts to the appearance of superoxide anion radicals in the cell. It is assumed that the oxidation of BBH leads to the generation of reactive oxygen species, which provide the main contribution to the genotoxicity of this substance.
Collapse
Affiliation(s)
- A. Kessenikh
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow, Russia
| | - E. Gnuchikh
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow, Russia
- State Research Institute of Genetics and Selection of Industrial Microorganisms of the National Research Centre “Kurchatov Institute”, Kurchatov Genomic Center, Moscow, Russia
- NRC “Kurchatov Institute”, Moscow, Russia
| | - S. Bazhenov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow, Russia
| | - M. Bermeshev
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia
| | - V. Pevgov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow, Russia
| | - V. Samoilov
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia
| | - S. Shorunov
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia
| | - A. Maksimov
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia
| | - L. Yaguzhinsky
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow, Russia
- AN Belozersky Res Inst Physicochem Biol, Moscow MV Lomonosov State Univ, Moscow, Russia
| | - I. Manukhov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow, Russia
- State Research Institute of Genetics and Selection of Industrial Microorganisms of the National Research Centre “Kurchatov Institute”, Kurchatov Genomic Center, Moscow, Russia
- * E-mail:
| |
Collapse
|