1
|
Oshiquiri LH, Pereira LMS, Maués DB, Milani ER, Silva AC, Jesus LFDMCD, Silva-Neto JA, Veras FP, de Paula RG, Silva RN. Regulatory Role of Vacuolar Calcium Transport Proteins in Growth, Calcium Signaling, and Cellulase Production in Trichoderma reesei. J Fungi (Basel) 2024; 10:853. [PMID: 39728349 DOI: 10.3390/jof10120853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/23/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
Recent research has revealed the calcium signaling significance in the production of cellulases in Trichoderma reesei. While vacuoles serve as the primary calcium storage within cells, the function of vacuolar calcium transporter proteins in this process remains unclear. In this study, we conducted a functional characterization of four vacuolar calcium transport proteins in T. reesei. This was accomplished by the construction of the four mutant strains ∆trpmc1, ∆tryvc1, ∆tryvc3, and ∆tryvc4. These mutants displayed enhanced growth when subjected to arabinose, xylitol, and xylose. Furthermore, the mutants ∆trpmc1, ∆tryvc1, and ∆tryvc4 showed a reduction in growth under conditions of 100 mM MnCl2, implying their role in manganese resistance. Our enzymatic activity assays revealed a lack of the expected augmentation in cellulolytic activity that is typically seen in the parental strain following the introduction of calcium. This was mirrored in the expression patterns of the cellulase genes. The vacuolar calcium transport genes were also found to play a role in the expression of genes involved with the biosynthesis of secondary metabolites. In summary, our research highlights the crucial role of the vacuolar calcium transporters and, therefore, of the calcium signaling in orchestrating cellulase and hemicellulase expression, sugar utilization, and stress resistance in T. reesei.
Collapse
Affiliation(s)
- Letícia Harumi Oshiquiri
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Lucas Matheus Soares Pereira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - David Batista Maués
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Elizabete Rosa Milani
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Alinne Costa Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | | | - Julio Alves Silva-Neto
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Flávio Protásio Veras
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Renato Graciano de Paula
- Department of Physiological Sciences, Health Sciences Centre, Federal University of Espirito Santo, Vitoria 29047-105, ES, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, Brazil
| | - Roberto Nascimento Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, Brazil
| |
Collapse
|
2
|
Baruah D, Tamuli R. The cell functions of phospholipase C-1, Ca 2+/H + exchanger-1, and secretory phospholipase A 2 in tolerance to stress conditions and cellulose degradation in Neurospora crassa. Arch Microbiol 2023; 205:327. [PMID: 37676310 DOI: 10.1007/s00203-023-03662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023]
Abstract
We investigated the cell functions of the Ca2+ signaling genes phospholipase C-1 (plc-1), Ca2+/H+ exchanger (cpe-1), and secretory phospholipase A2 (splA2) for stress responses and cellulose utilization in Neurospora crassa. The Δplc-1, Δcpe-1, and ΔsplA2 mutants displayed increased sensitivity to the alkaline pH and reduced survival during induced thermotolerance. The ΔsplA2 mutant also exhibited hypersensitivity to the DTT-induced endoplasmic reticulum (ER) stress, increased microcrystalline cellulose utilization, increased protein secretion, and glucose accumulation in the culture supernatants. Moreover, the ΔsplA2 mutant could not grow on microcrystalline cellulose during ER stress. Furthermore, plc-1, cpe-1, and splA2 synthetically regulate the acquisition of thermotolerance induced by heat shock, responses to alkaline pH and ER stress, and utilization of cellulose and other alternate carbon sources in N. crassa. In addition, expression of the alkaline pH regulator, pac-3, and heat shock proteins, hsp60, and hsp80 was reduced in the Δplc-1, Δcpe-1, and ΔsplA2 single and double mutants. The expression of the unfolded protein response (UPR) markers grp-78 and pdi-1 was also significantly reduced in the mutants showing growth defect during ER stress. The increased cellulolytic activities of the ΔsplA2 and Δcpe-1; ΔsplA2 mutants were due to increased cbh-1, cbh-2, and endo-2 expression in N. crassa. Therefore, plc-1, cpe-1, and splA2 are involved in stress responses and cellulose utilization in N. crassa.
Collapse
Affiliation(s)
- Darshana Baruah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India
| | - Ranjan Tamuli
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India.
| |
Collapse
|
3
|
Marak CNK, Tamuli R. Calmodulin, Calcium/Calmodulin-Dependent Kinases-1 and 2 Regulate Expression of the Heat Shock Proteins for Heat Shock Tolerance and Pheromone Signaling Genes for Sexual Development in Neurospora crassa. Indian J Microbiol 2023; 63:317-323. [PMID: 37781015 PMCID: PMC10533439 DOI: 10.1007/s12088-023-01091-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 08/05/2023] [Indexed: 10/03/2023] Open
Abstract
Calmodulin (CaM) is a primary Ca2+ sensor that binds and activates numerous target proteins and regulates several cellular processes in eukaryotes. CaM is essential in Neurospora crassa; therefore, we generated a CaM mutant using repeat-induced point (RIP) mutation and investigated the cmdRIP mutant phenotypes. We also studied knockout mutants of four Ca2+/CaM kinases (camk-1, 2, 3, and 4) for their role during stress conditions and sexual development. The cmdRIP, ∆camk-1, and ∆camk-2 mutants showed reduced survival and growth rates under heat stress, oxidative stress, pH, and ER stress conditions. In addition, under the heat stress conditions, expression of the heat shock protein genes hsp70 and hsp80 was reduced in the cmdRIP, ∆camk-1, and ∆camk-2 mutants. The cmdRIP mutant was also defective in cell fusion, its vegetative hyphae could not support the fertilized wild type perithecia graft, and female sterile. Furthermore, the expression of pheromone signaling genes pre-1, pre-2, ccg-4, mfa-1, and fmf-1 was reduced in the cmdRIP, ∆camk-1, and ∆camk-2 mutants. Therefore, CaM, Ca2+/CaMK-1 and 2 are involved in the tolerance to heat stress conditions and sexual development by regulating the heat shock and pheromone response pathways, respectively, in N. crassa. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-023-01091-8.
Collapse
Affiliation(s)
- Christy Noche K. Marak
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781 039 India
| | - Ranjan Tamuli
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781 039 India
| |
Collapse
|
4
|
Ma C, Liu J, Tang J, Sun Y, Jiang X, Zhang T, Feng Y, Liu Q, Wang L. Current genetic strategies to investigate gene functions in Trichoderma reesei. Microb Cell Fact 2023; 22:97. [PMID: 37161391 PMCID: PMC10170752 DOI: 10.1186/s12934-023-02104-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/21/2023] [Indexed: 05/11/2023] Open
Abstract
The filamentous fungus Trichoderma reesei (teleomorph Hypocrea jecorina, Ascomycota) is a well-known lignocellulolytic enzymes-producing strain in industry. To increase the fermentation titer of lignocellulolytic enzymes, random mutagenesis and rational genetic engineering in T. reesei were carried out since it was initially found in the Solomon Islands during the Second World War. Especially the continuous exploration of the underlying regulatory network during (hemi)cellulase gene expression in the post-genome era provided various strategies to develop an efficient fungal cell factory for these enzymes' production. Meanwhile, T. reesei emerges competitiveness potential as a filamentous fungal chassis to produce proteins from other species (e.g., human albumin and interferon α-2b, SARS-CoV-2 N antigen) in virtue of the excellent expression and secretion system acquired during the studies about (hemi)cellulase production. However, all the achievements in high yield of (hemi)cellulases are impossible to finish without high-efficiency genetic strategies to analyze the proper functions of those genes involved in (hemi)cellulase gene expression or secretion. Here, we in detail summarize the current strategies employed to investigate gene functions in T. reesei. These strategies are supposed to be beneficial for extending the potential of T. reesei in prospective strain engineering.
Collapse
Affiliation(s)
- Chixiang Ma
- China Medical University-The Queen's University of Belfast Joint College, Shenyang, Liaoning, 110122, China
| | - Jialong Liu
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jiaxin Tang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yuanlu Sun
- China Medical University-The Queen's University of Belfast Joint College, Shenyang, Liaoning, 110122, China
| | - Xiaojie Jiang
- China Medical University-The Queen's University of Belfast Joint College, Shenyang, Liaoning, 110122, China
| | - Tongtong Zhang
- China Medical University-The Queen's University of Belfast Joint College, Shenyang, Liaoning, 110122, China
| | - Yan Feng
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Qinghua Liu
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lei Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
5
|
Baruah D, Marak CNK, Roy A, Gohain D, Kumar A, Das P, Borkovich KA, Tamuli R. Multiple calcium signaling genes play a role in the circadian period of Neurospora crassa. FEMS Microbiol Lett 2023; 370:fnad044. [PMID: 37193664 PMCID: PMC10237334 DOI: 10.1093/femsle/fnad044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 04/12/2023] [Accepted: 05/15/2023] [Indexed: 05/18/2023] Open
Abstract
The Ca2+ signaling genes cpe-1, plc-1, ncs-1, splA2, camk-1, camk-2, camk-3, camk-4, cmd, and cnb-1 are necessary for a normal circadian period length in Neurospora crassa. In addition, the Q10 values ranged between 0.8 and 1.2 for the single mutants lacking cpe-1, splA2, camk-1, camk-2, camk-3, camk-4, and cnb-1, suggesting that the circadian clock exhibits standard temperature compensation. However, the Q10 value for the ∆plc-1 mutant was 1.41 at 25 and 30 °C, 1.53 and 1.40 for the ∆ncs-1 mutant at 20 and 25 °C, and at 20 and 30 °C, respectively, suggesting a partial loss of temperature compensation in these two mutants. Moreover, expression of frq, a regulator of the circadian period, and the blue light receptor wc-1, were increased >2-fold in the Δplc-1, ∆plc-1; ∆cpe-1, and the ∆plc-1; ∆splA2 mutants at 20 °C. The frq mRNA level was increased >2-fold in the Δncs-1 mutant compared to the ras-1bd strain at 20 °C. Therefore, multiple Ca2+ signaling genes regulate the circadian period, by influencing expression of the frq and wc-1 genes that are critical for maintaining the normal circadian period length in N. crassa.
Collapse
Affiliation(s)
- Darshana Baruah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Christy Noche K Marak
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Avishek Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Dibakar Gohain
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ajeet Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Pallavi Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Katherine A Borkovich
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, College of Natural and Agricultural Sciences, University of California Riverside, Riverside 92521, CA, USA
| | - Ranjan Tamuli
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
6
|
Gupta S, Kumar A, Tamuli R. CRZ1 transcription factor is involved in cell survival, stress tolerance, and virulence in fungi. J Biosci 2022. [DOI: 10.1007/s12038-022-00294-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Regulation of Hsp80 involved in the acquisition of induced thermotolerance, and NCA-2 involved in calcium stress tolerance by the calcineurin-CRZ-1 signaling pathway in Neurospora crassa. Mycol Prog 2022. [DOI: 10.1007/s11557-022-01833-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Heat shock proteins and the calcineurin-crz1 signaling regulate stress responses in fungi. Arch Microbiol 2022; 204:240. [PMID: 35377020 DOI: 10.1007/s00203-022-02833-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/26/2022]
Abstract
The heat shock proteins (Hsps) act as a molecular chaperone to stabilize client proteins involved in various cell functions in fungi. Hsps are classified into different families such as HSP90, HSP70, HSP60, HSP40, and small HSPs (sHsps). Hsp90, a well-studied member of the Hsp family proteins, plays a role in growth, cell survival, and pathogenicity in fungi. Hsp70 and sHsps are involved in the development, tolerance to stress conditions, and drug resistance in fungi. Hsp60 is a mitochondrial chaperone, and Hsp40 regulates fungal ATPase machinery. In this review, we describe the cell functions, regulation, and the molecular link of the Hsps with the calcineurin-crz1 calcium signaling pathway for their role in cell survival, growth, virulence, and drug resistance in fungi and related organisms.
Collapse
|
9
|
Vasselli JG, Shaw BD. Fungal spore attachment to substrata. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Zhao K, Liu Z, Li M, Hu Y, Yang L, Song X, Qin Y. Drafting Penicillium oxalicum calcineurin-CrzA pathway by combining the analysis of phenotype, transcriptome, and endogenous protein-protein interactions. Fungal Genet Biol 2021; 158:103652. [PMID: 34920105 DOI: 10.1016/j.fgb.2021.103652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/17/2021] [Accepted: 12/08/2021] [Indexed: 11/04/2022]
Abstract
Fungi sense environmental signals and coordinate growth, development, and metabolism accordingly. Calcium-calmodulin-calcineurin signaling is a conserved cascade pathway in fungi. One of the most important downstream targets of this pathway is the transcription factor Crz1/CrzA, which plays an essential role in various cellular processes. The putative collaborators of Penicillium oxalicum CrzA (PoCrzA) were found, through tandem affinity purification followed by mass spectrometric analysis (TAP-MS). A total of 50 protein-protein interaction collaborators of PoCrzA were observed. Among them, some collaborators, such as the catalytic subunit of calcineurin (Cna1, calcineurin A), the regulatory catalytic subunit of calcineurin (Cnb1, calcineurin B), and a 14-3-3 protein Bmh1, which were previously reported in yeast, were identified. Some putative collaborators, including two karyopherins (exportin Los1 and importin Srp1), two kinases (Fus3 and Slt2p), and a general transcriptional corepressor (Cyc8), were also found. The CrzA deletion mutant ΔPocrzA exhibited slow hyphal growth, impaired conidiogenesis, and reduced extracellular cellulase synthesis. Phenotype and transcriptome analysis showed that PoCrzA regulated fungal development in a Flbs-BrlA-dependent manner and participated in cellulase synthesis by modulating cellulolytic gene expression. On the basis of the results of TAP-MS, transcriptome, and phenotypic analysis in P. oxalicum, our study was the first to draft the calcineurin-CrzA pathway in cellulolytic fungi.
Collapse
Affiliation(s)
- Kaili Zhao
- National Glycoengineering Research Center, Shandong University, No. 72 Binhai Road, Qingdao 266237, China.
| | - Zhongjiao Liu
- National Glycoengineering Research Center, Shandong University, No. 72 Binhai Road, Qingdao 266237, China.
| | - Mengxue Li
- National Glycoengineering Research Center, Shandong University, No. 72 Binhai Road, Qingdao 266237, China.
| | - Yueyan Hu
- National Glycoengineering Research Center, Shandong University, No. 72 Binhai Road, Qingdao 266237, China; State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, China.
| | - Ling Yang
- Vocational Education College, Dezhou University, Dezhou 253023, China.
| | - Xin Song
- National Glycoengineering Research Center, Shandong University, No. 72 Binhai Road, Qingdao 266237, China; State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, China.
| | - Yuqi Qin
- National Glycoengineering Research Center, Shandong University, No. 72 Binhai Road, Qingdao 266237, China; State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, China.
| |
Collapse
|
11
|
Wang T, Guan W, Du Y, Xu Y, He Z, Zhang Y, Kang C, Wan X, Chi X, Sun K, Zhang X. Proteome-wide analyses reveal diverse functions of acetylation proteins in Neurospora crassa. Proteomics 2021; 21:e2000212. [PMID: 33491270 DOI: 10.1002/pmic.202000212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/15/2020] [Accepted: 01/12/2021] [Indexed: 11/07/2022]
Abstract
Quantitative acetyl-proteomics, a newly identified post-translational modification, is known to regulate transcriptional activity in different organisms. Neurospora crassa is a model ascomycete fungus maintained for biochemistry and molecular biology research; however, extensive studies of the functions of its acylation proteins have yet to be performed. In this study, using LC-MS/MS qualitative proteomics strategies, we identified 1909 modification sites on 940 proteins in N. crassa and analysed the functions of these proteins using GO enrichment, KEGG pathway, and subcellular location experiments. We classified the acetylation protein involvement in diverse pathways, and protein-protein interaction (PPI) network analysis further demonstrated that these proteins participate in diverse biological processes. In summary, our study comprehensively profiles the crosstalk of modified sites, and PPI among these proteins may form a complex network with both similar and distinct regulatory mechanisms, providing improved understanding of their biological functions in N. crassa.
Collapse
Affiliation(s)
- Tielin Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Guan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongxi Du
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Xu
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhen He
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| | - Yan Zhang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chuanzhi Kang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiufu Wan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiulian Chi
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kai Sun
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaobo Zhang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Abstract
Calcium (Ca2+) is a universal signalling molecule of life. The Ca2+ signalling is an evolutionarily conserved process from prokaryotes to eukaryotes. Ca2+ at high concentration is deleterious to the cell; therefore, cell maintains a low resting level of intracellular free Ca2+ concentration ([Ca2+]c). The resting [Ca2+]c is tightly regulated, and a transient increase of the [Ca2+]c initiates a signalling cascade in the cell. Ca2+ signalling plays an essential role in various processes, including growth, development, reproduction, tolerance to stress conditions, and virulence in fungi. In this review, we describe the evolutionary aspects of Ca2+ signalling and cell functions of major Ca2+ signalling proteins in different fungi.
Collapse
Affiliation(s)
- Avishek Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Ajeet Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Darshana Baruah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Ranjan Tamuli
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|