1
|
Mvogo Nyebe RA, Kumar A, Ngonkeu Mangaptche EL, Kumar S, Velmurugan S, Krishnappa C, Kundu A, Djuikwo V, Joshi D, Gogoi R, Fokou E. Multi-omics characterization of aflatoxigenic Aspergillus from grains and rhizosphere of maize across agroecological zones of Cameroon. Sci Rep 2025; 15:18407. [PMID: 40419733 DOI: 10.1038/s41598-025-97296-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/03/2025] [Indexed: 05/28/2025] Open
Abstract
Maize (Zea mays L.) is the most widely consumed cereal in Cameroon but is frequently contaminated with aflatoxins, posing significant economic, environmental, and health risks. These challenges hinder progress toward the UN Sustainable Development Goals (SDGs) and Cameroon's 2020-2030 National Development Strategy. A sustainable approach to managing aflatoxin contamination is biocontrol, which relies on naturally occurring atoxigenic fungi to suppress toxigenic strains. Although biocontrol strategies have been widely explored globally, their application in maize production and storage in Cameroon remains limited. This study aimed to establish a foundation for aflatoxin biocontrol by characterizing Aspergillus flavus strains associated with maize in Cameroon using a multi-omics approach. Characterization was performed using culturomic, microscopic, genomic, metabolomic, and targeted gene expression analysis techniques. Thirteen A. flavus L-morphotype strains were identified, including seven endophytic strains from maize seeds and six from the rhizosphere. All strains were confirmed as aflatoxigenic through ammonia vapor and UV tests, as well as metabolomic analysis, which identified cyclopiazonic acid, gliotoxin, and kotanin as core secondary metabolites, and quantified different aflatoxins in all the 13 strains. Gene analysis revealed seven distinct aflatoxin biosynthesis genotypes, with the aflC gene playing a key role in aflatoxin production. qRT-PCR results showed lower expression of aflatoxin biosynthesis genes in rhizosphere strains compared to seed-associated strains, confirming the regulatory function of the aflR gene. Interestingly, maize seeds pre-treated or co-inoculated with certain less aflatoxigenic A. flavus strains exhibited signs of induced resistance, suggesting a possible immunization effect by endophytic aflatoxigenic strains. This finding highlights a potential avenue for biocontrol, warranting further research to elucidate the underlying metabolic pathways and optimize conditions for practical application.
Collapse
Affiliation(s)
- Rolly Audrey Mvogo Nyebe
- Laboratory for Food Science and Metabolism, Department of Biochemistry, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon.
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Aundy Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Eddy Léonard Ngonkeu Mangaptche
- Institute of Agricultural Research for Development (IRAD), Yaoundé, Cameroon
- Department of Plant Biology, University of Yaoundé I, Yaoundé, Cameroon
| | - Shanu Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shanmugam Velmurugan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Charishma Krishnappa
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
- Forest Protection Division, Forest Research Institute, FRI, Dehradun, 248006, India
| | - Aditi Kundu
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Viviane Djuikwo
- Laboratory for Food Science and Metabolism, Department of Biochemistry, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Deeksha Joshi
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Robin Gogoi
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Elie Fokou
- Laboratory for Food Science and Metabolism, Department of Biochemistry, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| |
Collapse
|
2
|
Zhang H, Wen N, Gong X, Li X. Application of triboelectric nanogenerator (TENG) in cancer prevention and adjuvant therapy. Colloids Surf B Biointerfaces 2024; 242:114078. [PMID: 39018914 DOI: 10.1016/j.colsurfb.2024.114078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/15/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024]
Abstract
Cancer is a malignant tumor that kills about 940,000 people worldwide each year. In addition, about 30-77 % of cancer patients will experience cancer metastasis and recurrence, which can increase the cancer mortality rate without prompt treatment. According to the US Food and Drug Administration, wearable devices can detect several physiological indicators of patients to reflect their health status and adjuvant cancer treatment. Based on the triboelectric effect and electrostatic induction phenomenon, triboelectric nanopower generation (TENG) technology can convert mechanical energy into electricity and drive small electronic devices. This article reviewed the research status of TENG in the areas of cancer prevention and adjuvant therapy. TENG can be used for cancer prevention with advanced sensors. At the same time, electrical stimulation generated by TENG can also be used to help inhibit the growth of cancer cells to reduce the proliferation, recurrence, and metastasis of cancer cells. This review will promote the practical application of TENG in healthcare and provide clean and sustainable energy solutions for wearable bioelectronic systems.
Collapse
Affiliation(s)
- Haohao Zhang
- Nanjing Institute of Technology, Jiangning District, Nanjing City, Jiangsu Province 211167, China
| | - Ning Wen
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xiaoran Gong
- Nanjing Institute of Technology, Jiangning District, Nanjing City, Jiangsu Province 211167, China
| | - Xue Li
- Nanjing Institute of Technology, Jiangning District, Nanjing City, Jiangsu Province 211167, China.
| |
Collapse
|
3
|
Fathallah N, Elkady WM, Zahran SA, Darwish KM, Elhady SS, Elkhawas YA. Unveiling the Multifaceted Capabilities of Endophytic Aspergillus flavus Isolated from Annona squamosa Fruit Peels against Staphylococcus Isolates and HCoV 229E-In Vitro and In Silico Investigations. Pharmaceuticals (Basel) 2024; 17:656. [PMID: 38794226 PMCID: PMC11124496 DOI: 10.3390/ph17050656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Recently, there has been a surge towards searching for primitive treatment strategies to discover novel therapeutic approaches against multi-drug-resistant pathogens. Endophytes are considered unexplored yet perpetual sources of several secondary metabolites with therapeutic significance. This study aims to isolate and identify the endophytic fungi from Annona squamosa L. fruit peels using morphological, microscopical, and transcribed spacer (ITS-rDNA) sequence analysis; extract the fungus's secondary metabolites by ethyl acetate; investigate the chemical profile using UPLC/MS; and evaluate the potential antibacterial, antibiofilm, and antiviral activities. An endophytic fungus was isolated and identified as Aspergillus flavus L. from the fruit peels. The UPLC/MS revealed seven compounds with various chemical classes. The antimicrobial activity of the fungal ethyl acetate extract (FEA) was investigated against different Gram-positive and Gram-negative standard strains, in addition to resistant clinical isolates using the agar diffusion method. The CPE-inhibition assay was used to identify the potential antiviral activity of the crude fungal extract against low pathogenic human coronavirus (HCoV 229E). Selective Gram-positive antibacterial and antibiofilm activities were evident, demonstrating pronounced efficacy against both methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA). However, the extract exhibited very weak activity against Gram-negative bacterial strains. The ethyl acetate extract of Aspergillus flavus L exhibited an interesting antiviral activity with a half maximal inhibitory concentration (IC50) value of 27.2 µg/mL against HCoV 229E. Furthermore, in silico virtual molecular docking-coupled dynamics simulation highlighted the promising affinity of the identified metabolite, orienting towards three MRSA biotargets and HCoV 229E main protease as compared to reported reference inhibitors/substrates. Finally, ADME analysis was conducted to evaluate the potential oral bioavailability of the identified metabolites.
Collapse
Affiliation(s)
- Noha Fathallah
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt;
| | - Wafaa M. Elkady
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt;
| | - Sara A. Zahran
- Department of Microbiology and Immunology, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt;
| | - Khaled M. Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Sameh S. Elhady
- King Abdulaziz University Herbarium, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yasmin A. Elkhawas
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt;
| |
Collapse
|
4
|
Zhou J, Liu Y, Du X, Gui Y, He J, Xie F, Cai J. Recent Advances in Design and Application of Nanomaterials-Based Colorimetric Biosensors for Agri-food Safety Analysis. ACS OMEGA 2023; 8:46346-46361. [PMID: 38107919 PMCID: PMC10720297 DOI: 10.1021/acsomega.3c06409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/12/2023] [Accepted: 11/03/2023] [Indexed: 12/19/2023]
Abstract
A colorimetric sensor detects an analyte by utilizing the optical properties of the sensor unit, such as absorption or reflection, to generate a structural color that serves as the output signal to detect an analyte. Detecting the refractive index of an analyte by recording the color change of the sensor structure on its surface has several advantages, including simple operation, low cost, suitability for onsite analysis, and real-time detection. Colorimetric sensors have drawn much attention owing to their rapidity, simplicity, high sensitivity and selectivity. This Review discusses the use of colorimetric sensors in the food industry, including their applications for detecting food contaminants. The Review also provides insight into the scope of future research in this area.
Collapse
Affiliation(s)
- Jiaojiao Zhou
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuantao Liu
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoping Du
- Ankang
R&D Center for Se-enriched Products, Key Laboratory of Se-enriched
Products Development and Quality Control, Ministry of Agriculture and Rural Affairs, Ankang Shaanxi 725000, China
| | - Yue Gui
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiangling He
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Fang Xie
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jie Cai
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key
Laboratory for Deep Processing of Major Grain and Oil, Ministry of
Education, Hubei Key Laboratory for Processing and Transformation
of Agricultural Products, Wuhan Polytechnic
University, Wuhan 430023, China
| |
Collapse
|
5
|
Manasa V, Appaiah KAA. Indigenous fungal strains isolation and molecular identification from coffee pulp for the production of pectic oligosaccharides. 3 Biotech 2023; 13:410. [PMID: 37997596 PMCID: PMC10663428 DOI: 10.1007/s13205-023-03811-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 10/07/2023] [Indexed: 11/25/2023] Open
Abstract
Coffee pulp (CP) is a significant agro-industrial waste generated during coffee bean processing, which possess substantial environmental contamination and is rich in pectin. The primary objective of this study was to investigate the conversion of pectin extracted from coffee pulp into pectic oligosaccharides (POS) using native microbial strains. The study aimed to optimize the growing conditions, including temperature, time, and pectin concentration, to assess the productivity of pectinase. Two fungal strains that exhibited the highest growth on CP were isolated and subsequently identified as Aspergillus fumigatus P-1007 and A. fumigatus HA1, employing 5.8S rRNA gene sequencing. The optimization of temperature for the organism was carried out between 25 and 45 °C; compared to the other temperatures at 45 °C the productivity of pectinase was high; the exact temperature was used for the time experiment where we found that compared to the A. fumigatus P-1007, A. fumigates HA1 was showed high enzyme productivity on 6th day. Hence, the highest productivity of endo-pectinase was seen at a temperature of 45 °C on the 6th day using isolated A. fumigates HA1 in the CP with 1% of coffee pectin. Additionally, the produced POS were screened and confirmed through TLC and HPLC analysis. The antioxidant activity of the POS derived from the separated CP demonstrated an effective concentration (EC50) of 400 µg/ml. The study indicates that the efficient utilization of CP waste for producing potentially valuable functional food ingredients, such as POS, holds promise for commercial development. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03811-9.
Collapse
Affiliation(s)
- Vallamkondu Manasa
- Microbiology and Fermentation Technology, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysore, 570020 India
| | - K. A. Anu Appaiah
- Microbiology and Fermentation Technology, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysore, 570020 India
| |
Collapse
|
6
|
Saber H, Chebloune Y, Moussaoui A. Molecular Characterization of Aspergillus flavus Strains Isolated from Animal Feeds. Pol J Microbiol 2022; 71:589-599. [PMID: 36537059 PMCID: PMC9944975 DOI: 10.33073/pjm-2022-048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/21/2022] [Indexed: 12/24/2022] Open
Abstract
Aflatoxin (AF)-producing fungi such as Aspergillus flavus commonly contaminate animal feeds, causing high economic losses. A. flavus is the most prevalent and produces AFB1, a potent mutagen, and carcinogen threatening human and animal health. Aspergillaceae is a large group of closely related fungi sharing number of morphological and genetic similarities that complicate the diagnosis of highly pathogenic strains. We used here morphological and molecular assays to characterize fungal isolates from animal feeds in Southwestern Algeria. These tools helped to identify 20 out of 30 Aspergillus strains, and 15 of them belonged to the Aspergillus section Flavi. Further analyses detected four out of 15 as belonging to Aspergillus flavus-parasiticus group. PCR targeting the AF genes' aflR-aflS(J) intergenic region amplified a single 674 bp amplicon in all four isolates. The amplicons were digested with a BglII endonuclease, and three specific fragments were observed for A. flavus but A. parasitucus lacked two typical fragments. Sequencing data of four amplicons confirmed the presence of the two BglII restriction sites yielding the three fragments, confirming that all four strains were A. flavus. In addition, this analysis illustrated the genetic variability within the A. flavus strains.
Collapse
Affiliation(s)
- Hadjer Saber
- Laboratory of Plant Resources Valorization and Food Safety in Semi-Arid Areas of Southwestern Algeria, Department of Biology, University of Bechar, Bechar, Algeria
| | - Yahia Chebloune
- USC 1450 INRAE/UGA Lentiviral Pathogenesis and Vaccination Laboratory, Department of Biology, University of Grenoble Alpes, Saint-Martin-d’Hères, France, Y. Chebloune, Lentiviral Pathogenesis and Vaccination Laboratory, PAVAL Lab., Department of Biology, University of Grenoble Alpes, Saint-Martin-d’Hères, France;
| | - Abdallah Moussaoui
- Laboratory of Plant Resources Valorization and Food Safety in Semi-Arid Areas of Southwestern Algeria, Department of Biology, University of Bechar, Bechar, Algeria
| |
Collapse
|
7
|
A review of mycotoxin biosynthetic pathways: associated genes and their expressions under the influence of climatic factors. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
8
|
Abd El-Aziz AR, Shehata SM, Hisham SM, Alobathani AA. Molecular profile of aflatoxigenic and non-aflatoxigenic isolates of Aspergillus flavus isolated from stored maize. Saudi J Biol Sci 2021; 28:1383-1391. [PMID: 33613068 PMCID: PMC7878702 DOI: 10.1016/j.sjbs.2020.11.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 12/02/2022] Open
Abstract
Maize is a significant staple crop and utilized in Saudi Arabia as food and feed, but maize is often infected with Aspergillus flavus in tropical and subtropical climates, especially during storage. This study intended at a polyphasic approach, consisting of microscopic morphological, biochemical, and molecular characterizations that were applied to 29 of A. flavus isolates of stored maize, with the goal of characterization and identification of aflatoxigenic and non-aflatoxigenic A. flavus isolates. The technique of real-time PCR (RTi-PCR) was used to detection of A. flavus in stored maize samples, the findings have been very accurate. Centered on macroscopic morphological (primarily colony color and morphology of conidia) and microscopic (morphology of conidia and size) characteristics. Results have shown 23 A. flavus isolates (80%) were categorized as the dark green of colonies also all isolates were rough conidia. The isolates have been two different groups, 16 isolates (62%) had sclerotium-forming and the remaining 13 isolates (38%) had no sclerotium-forming isolates. To the identification of aflatoxigenic isolates of A. flavus in stored maize, we utilized the qualitative methods (easy and inexpensive) like UV test, yellow pigmentation, and ammonia vapor and quantitative method as HPLC (accurate and expensive). the accuracy methods to the identification aflatoxigenicity isolates, vary, and classified in the following descending order: HPLC (100%) > UV method (81%) > yellow pigmentation (YP) and ammonia vapor (AV) (63%). The profile of Aflatoxigenicity of A. flavus isolates by HPLC has been involved in two types first of 11 isolates (38%) have been aflatoxigenic isolates while 18 isolates (62%) were non-aflatoxigenic isolates. The expression of six aflatoxins (AFs) genes (aflD, aflM, aflO, aflP, aflR, and aflQ) was estimated using PCR and RT-PCR. PCR of all genes did not correspond to the aflatoxigenic isolates. The transcriptional analysis of aflO and aflQ was a beneficial marker for discriminating aflatoxigenic from non-aflatoxigenic A. flavus isolates. Also, qRT-PCR indicated that non-aflatoxigenic isolates had a high incidence of defect or downregulation in late AF-genes contrast with early AF-genes. therefore, these non-aflatoxigenic isolates could be critical factors for an efficient and competent strategy for the control of aflatoxin contamination pre-harvest can be considered.
Collapse
Affiliation(s)
- Abeer R.M. Abd El-Aziz
- Botany and Microbiology, Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Corresponding author.
| | - Shereen M. Shehata
- Pharmaceutical Chemistry Depart., College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sameh M. Hisham
- Botany and Microbiology, Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Afnan A. Alobathani
- Botany and Microbiology, Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|