1
|
He Y, Mok K, Chumnanpuen P, Nakphaichit M, Vongsangnak W. Dissecting Metabolic Functions and Sugar Transporters Using Genome and Transportome of Probiotic Limosilactobacillus fermentum KUB-D18. Genes (Basel) 2025; 16:348. [PMID: 40149499 PMCID: PMC11942490 DOI: 10.3390/genes16030348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/04/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives:Limosilactobacillus fermentum KUB-D18, a heterofermentative lactic acid bacterium with promising probiotic properties, is known for promoting gut health and nutrient absorption. Originally isolated from chicken intestines, this strain demonstrates versatile metabolic capabilities in diverse gastrointestinal environments. However, the metabolic functions and sugar transport-related genes remain largely unexplored. This study thus aimed to dissect metabolic functions and sugar transports of L. fermentum KUB-D18. Methods: Next-generation and third-generation sequencing techniques using integrative genomic platform towards transportome analysis were performed. Results: The complete genome, sized at 2.12 Mbps with a GC content of 51.36%, revealed 2079 protein-encoding genes, of which 1876 protein functions were annotated and identified in top categories involved in amino acids, nucleotide, energy, and carbohydrate transports and metabolisms. Comparative genes analysis identified 50 core and 12 strain-specific genes linked to probiotic properties, e.g., acid resistances and bile tolerances, antioxidant functions, or anti-inflammatory properties. Further, sugar transportome analysis uncovered 57 transporter genes, demonstrating diverse carbon utilization and phosphotransferase (PTS) systems, corroborated by API 50 CHL test results for carbohydrate metabolism profile. Conclusions: These findings enhance the comprehensive metabolic understanding of L. fermentum KUB-D18, supporting its industrial potential and applications in engineered probiotics.
Collapse
Affiliation(s)
- Yuke He
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Kevin Mok
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand;
- Center of Excellence for Microbiota Innovation, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Pramote Chumnanpuen
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| | - Massalin Nakphaichit
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand;
- Center of Excellence for Microbiota Innovation, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
2
|
Yangyanqiu W, Jian C, Yuqing Y, Zhanbo Q, Shuwen H. Gut microbes involvement in gastrointestinal cancers through redox regulation. Gut Pathog 2023; 15:35. [PMID: 37443096 DOI: 10.1186/s13099-023-00562-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Gastrointestinal (GI) cancers are among the most common and lethal cancers worldwide. GI microbes play an important role in the occurrence and development of GI cancers. The common mechanisms by which GI microbes may lead to the occurrence and development of cancer include the instability of the microbial internal environment, secretion of cancer-related metabolites, and destabilization of the GI mucosal barrier. In recent years, many studies have found that the relationship between GI microbes and the development of cancer is closely associated with the GI redox level. Redox instability associated with GI microbes may induce oxidative stress, DNA damage, cumulative gene mutation, protein dysfunction and abnormal lipid metabolism in GI cells. Redox-related metabolites of GI microbes, such as short-chain fatty acids, hydrogen sulfide and nitric oxide, which are involved in cancer, may also influence GI redox levels. This paper reviews the redox reactions of GI cells regulated by microorganisms and their metabolites, as well as redox reactions in the cancer-related GI microbes themselves. This study provides a new perspective for the prevention and treatment of GI cancers.
Collapse
Affiliation(s)
- Wang Yangyanqiu
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Graduate School of Medical College, Zhejiang University, No. 268 Kaixuan Road, Jianggan District, Hangzhou, 310029, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, Republic of China
| | - Chu Jian
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, Republic of China
| | - Yang Yuqing
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, Republic of China
| | - Qu Zhanbo
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, Republic of China
| | - Han Shuwen
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, Republic of China.
| |
Collapse
|
3
|
Eroglu A, Al'Abri IS, Kopec RE, Crook N, Bohn T. Carotenoids and Their Health Benefits as Derived via Their Interactions with Gut Microbiota. Adv Nutr 2023; 14:238-255. [PMID: 36775788 DOI: 10.1016/j.advnut.2022.10.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/21/2022] [Accepted: 10/28/2022] [Indexed: 12/23/2022] Open
Abstract
Carotenoids have been related to a number of health benefits. Their dietary intake and circulating levels have been associated with a reduced incidence of obesity, diabetes, certain types of cancer, and even lower total mortality. Their potential interaction with the gut microbiota (GM) has been generally overlooked but may be of relevance, as carotenoids largely bypass absorption in the small intestine and are passed on to the colon, where they appear to be in part degraded into unknown metabolites. These may include apo-carotenoids that may have biological effects because of higher aqueous solubility and higher electrophilicity that could better target transcription factors, i.e., NF-κB, PPARγ, and RAR/RXRs. If absorbed in the colon, they could have both local and systemic effects. Certain microbes that may be supplemented were also reported to produce carotenoids in the colon. Although some bactericidal aspects of carotenoids have been shown in vitro, a few studies have also demonstrated a prebiotic-like effect, resulting in bacterial shifts with health-associated properties. Also, stimulation of IgA could play a role in this respect. Carotenoids may further contribute to mucosal and gut barrier health, such as stabilizing tight junctions. This review highlights potential gut-related health-beneficial effects of carotenoids and emphasizes the current research gaps regarding carotenoid-GM interactions.
Collapse
Affiliation(s)
- Abdulkerim Eroglu
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, USA; Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC, USA.
| | - Ibrahim S Al'Abri
- Department of Chemical and Biomolecular Engineering, College of Engineering, North Carolina State University, Raleigh, NC, USA
| | - Rachel E Kopec
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH, USA; Foods for Health Discovery Theme, The Ohio State University, Columbus, OH, USA
| | - Nathan Crook
- Department of Chemical and Biomolecular Engineering, College of Engineering, North Carolina State University, Raleigh, NC, USA
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, rue 1 A-B, Thomas Edison, L-1445 Strassen, Luxembourg.
| |
Collapse
|
4
|
Ghazal F, Farooq S, Wahab AT, Maharjan R, Zafar H, Siddiqui H, Shafi S, Choudhary MI. Identification of quinoline derivatives as growth inhibitors of MDR pathogen Klebsiella pneumoniae. Future Microbiol 2022; 17:843-859. [PMID: 35796056 DOI: 10.2217/fmb-2021-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: This study was aimed to identify compounds with significant inhibitory potential against multidrug-resistant (MDR), multidrug-sensitive, and clinical isolates of Klebsiella pneumoniae. Materials & methods: Antibacterial activity of the nitroquinoline derivatives was assessed by micro-plate Alamar Blue assay. Results: Nitroquinoline derivatives 9, 11 and 14 showed inhibitory activity against MDR K. pneumoniae. Docking studies of these compounds with topoisomerase IV of K. pneumonia indicated the interactions of these compounds at the active site residues of enzyme near to cofactor (Mg+2). Furthermore, compound 11 was identified as a reactive oxygen species (ROS) inducer. None of the compounds showed hemolytic effect. Conclusion: This study was designed to identify compounds active against MDR K. pneumoniae which causes infections, such as pneumonia and urinary tract infections.
Collapse
Affiliation(s)
- Farzeen Ghazal
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Saba Farooq
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Atia-Tul Wahab
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Rukesh Maharjan
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Humaira Zafar
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Hina Siddiqui
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Sara Shafi
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - M I Choudhary
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.,Dr Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
5
|
Hu X, Peng K, Chen Y, Chen X, Liu S, Zhao Y, Wu Y, Xu Z. Effect of g-C 3N 4 on biodiversity and structure of bacterial community in sediment of Xiangjiang River under tetracycline pressure. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:503-515. [PMID: 35181861 DOI: 10.1007/s10646-022-02525-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Photocatalysts have been widely prepared and used in wastewater treatment. Although the influence of photocatalyst application on survival and activity of organisms has been examined, its impact on composition and diversity of microbial community is not fully understood. In this study, the impact of photocatalyst g-C3N4 (Graphitic carbon nitride) on microbial communities in riverbed sediments polluted by antibiotic tetracycline (TC) was investigated. The sediment samples collected from the Xiangjiang River of China were exposed to different concentrations of TC, g-C3N4 and TC/g-C3N4 and the bacterial community were analyzed by Illumina sequencing. The results showed that the dominant bacterial phyla were Acidobacteriota, Proteobacteria, Actinobacteriota, and Chloroflexi in the study site. When compared to the control treatments, the application of TC, g-C3N4 and TC/g-C3N4 exhibited distinguishable effects on bacterial community structure in sediments. The presence of TC had greater influence on bacterial composition, while g-C3N4 and TC/g-C3N4 had less influence on bacteria. The diversity and richness of microorganisms in sediment increased under g-C3N4 application and reached the highest values when g-C3N4 was 75 mg/kg. The photocatalyst g-C3N4 restored bacterial community diversity affected by TC, reduced the TC residues in aquatic environment, and eliminated the side effects of TC application in sediments. Our study indicated that g-C3N4 was an environmentally friendly photocatalyst with lightly negative effects on microbial community in riverbed sediments, and could be used for effective remediation of TC-contaminated environments.
Collapse
Affiliation(s)
- Xuemei Hu
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Kuan Peng
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yijun Chen
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xiaoyong Chen
- College of Arts and Sciences, Governors State University, University Park, IL, 60484, USA
| | - Shuguang Liu
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Changsha, 410004, China
| | - Yunlin Zhao
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yaohui Wu
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, China.
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Changsha, 410004, China.
| | - Zhenggang Xu
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A and F University, No.3 Taicheng Road, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
6
|
Zhang S, Wang T, Zhang D, Wang X, Zhang Z, Lim C, Lee S. Probiotic characterization of Lactiplantibacillus plantarum HOM3204 and its restoration effect on antibiotic-induced dysbiosis in mice. Lett Appl Microbiol 2022; 74:949-958. [PMID: 35231139 PMCID: PMC9315005 DOI: 10.1111/lam.13683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to evaluate the probiotic characteristics of Lactiplantibacillus plantarum HOM3204 isolated from homemade pickled cabbage and to examine its restoration effect on antibiotic-induced dysbiosis in mice. Lact. plantarum HOM3204 tolerated simulated gastric and intestinal juices with a 99.38% survival rate. It also showed strong adhesion ability (3.45%) to Caco-2 cells and excellent antimicrobial activity against foodborne pathogens in vitro. For safety (antibiotic susceptibility) of this strain, it was susceptible to all the tested seven antibiotics. Lact. plantarum HOM3204 had good stability during storage, especially in cold and frozen conditions. Furthermore, Lact. plantarum HOM3204 significantly restored the gut microbiota composition by increasing the abundance of Lactobacilli and Bifidobacteria and decreasing Enterococci, and improved antioxidative function by raising the concentrations of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) in serum of antibiotic-induced dysbiosis in mice. These results suggest that Lact. plantarum HOM3204 could be a potential probiotic as a functional food ingredient.
Collapse
Affiliation(s)
- S Zhang
- Coree Beijing Co., Ltd, Beijing, China
| | - T Wang
- Beijing Hanmi pharmaceutical Co., Ltd, Beijing, China
| | - D Zhang
- Coree Beijing Co., Ltd, Beijing, China
| | - X Wang
- Beijing Hanmi pharmaceutical Co., Ltd, Beijing, China
| | - Z Zhang
- Beijing Hanmi pharmaceutical Co., Ltd, Beijing, China
| | - C Lim
- Coree Beijing Co., Ltd, Beijing, China.,Coree Pohang Co., Ltd, Pohang, Korea
| | - S Lee
- Coree Beijing Co., Ltd, Beijing, China.,Coree Pohang Co., Ltd, Pohang, Korea
| |
Collapse
|
7
|
Dual Effect: High NADH Levels Contribute to Efflux-Mediated Antibiotic Resistance but Drive Lethality Mediated by Reactive Oxygen Species. mBio 2022; 13:e0243421. [PMID: 35038918 PMCID: PMC8764520 DOI: 10.1128/mbio.02434-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In light of the antibiotic crisis, emerging strategies to sensitize bacteria to available antibiotics should be explored. Several studies on the mechanisms of killing suggest that bactericidal antibiotic activity is enforced through the generation of reactive oxygen species (ROS-lethality hypothesis). Here, we artificially manipulated the redox homeostasis of the model opportunistic pathogen Pseudomonas aeruginosa using specific enzymes that catalyze either the formation or oxidation of NADH. Increased NADH levels led to the activation of antibiotic efflux pumps and high levels of antibiotic resistance. However, higher NADH levels also resulted in increased intracellular ROS and amplified antibiotic killing. Our results demonstrate that growth inhibition and killing activity are mediated via different mechanisms. Furthermore, the profound changes in bioenergetics produced low-virulence phenotypes characterized by reduced interbacterial signaling controlled pathogenicity traits. Our results pave the way for a more effective infection resolution and add an antivirulence strategy to maximize chances to combat devastating P. aeruginosa infections while reducing the overall use of antibiotics. IMPORTANCE The emergence of antibiotic resistance has become one of the major threats to public health. A better understanding of antimicrobial killing mechanisms promises to uncover new ways to resensitize bacteria to commonly used antibiotics. In this context, there is increasing evidence that the metabolic status of the cell plays a fundamental role in reactive oxygen species (ROS)-mediated cell death. In this work, we artificially manipulated the redox balance in Pseudomonas aeruginosa by the expression of two orthologous enzymes. We found that the increase of intracellular NADH concentrations leads to higher antibiotic resistance but also generates a burst in the production of ROS that amplified antimicrobial killing. Our work suggests that the combination of bactericidal antibiotics with agents that disturb the cellular redox homeostasis could significantly enhance antibiotic killing via sensitization of pathogens to currently available antibiotics.
Collapse
|
8
|
Hu J, Mohammed A, Murugesan G, Cheng H. Effect of a synbiotic supplement as an antibiotic alternative on broiler skeletal, physiological, and oxidative parameters under heat stress. Poult Sci 2022; 101:101769. [PMID: 35247651 PMCID: PMC8892129 DOI: 10.1016/j.psj.2022.101769] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/24/2022] Open
Abstract
The aim of this study was to examine if synbiotics can function as alternatives to antibiotics in broiler production under heat stress (HS). Day-old broiler chicks (528 birds) were randomly placed in floor pens within 2 identical temperature-controlled rooms (11 birds/pen and 24 pens/room). The pens of each room were evenly divided among 3 treatments (n = 8): basal diet (CON), the basal diet mixed with 50 ppm of bacitracin methylene disalicylate (BMD) or a synbiotic (50 ppm of PoultryStar meUS, SYN). From d 15, room 2 was under thermoneutral (TN) conditions (TN-CON, TN-BMD, and TN-SYN), while HS was applied to room 1 at 32oC for 9 hrs/d (0800 to 1700) (HS-CON, HS-BMD, and HS-SYN). Treatment effects on footpad dermatitis and gait score were measured on 5 birds/pen, and latency to lie (LTL) test was measured on 2 birds/pen at d 27 and d 41; and 1 broiler/pen was sampled on d 28 and d 42, respectively. Body, liver, and spleen weight were determined. Plasma levels of interleukins (IL), heat shock protein 70, immunoglobulin (Ig)Y, liver superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzyme activities were examined. Heat stress suppressed BW and IgY concentrations on both d 28 and d 42, while suppressed plasma IL-6 concentrations, SOD activities, and LTL duration on d 28 only (P < 0.05). Among all treatments, SYN birds had the best foot and skeletal health scores on both d 27 and d 41 (P < 0.05). On d 42, SYN increased BW, and TN-SYN birds had higher relative spleen weight than both TN-BMD and TN-CON birds (P < 0.05). Antibiotic BMD increased BW (P < 0.05) but decreased SOD activities (P < 0.05) on d 42. These results indicate that the SYN supplementation decreases HS negative effect on broilers by improving BW, foot, and skeletal health, while BMD improves BW but also increases oxidative stress in broilers. The data suggest that synbiotic supplement may function as an alternative to antibiotics in broiler production during summer seasons, especially in the tropical and subtropical regions.
Collapse
|
9
|
Astaxanthin-Mediated Bacterial Lethality: Evidence from Oxidative Stress Contribution and Molecular Dynamics Simulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7159652. [PMID: 34925700 PMCID: PMC8677388 DOI: 10.1155/2021/7159652] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 01/26/2023]
Abstract
The involvement of cellular oxidative stress in antibacterial therapy has remained a topical issue over the years. In this study, the contribution of oxidative stress to astaxanthin-mediated bacterial lethality was evaluated in silico and in vitro. For the in vitro analysis, the minimum inhibitory concentration (MIC) of astaxanthin was lower than that of novobiocin against Staphylococcus aureus but generally higher than those of the reference antibiotics against other test organisms. The level of superoxide anion of the tested organisms increased significantly following treatment with astaxanthin when compared with DMSO-treated cells. This increase compared favorably with those observed with the reference antibiotics and was consistent with a decrease in the concentration of glutathione (GSH) and corresponding significant increase in ADP/ATP ratio. These observations are suggestive of probable involvement of oxidative stress in antibacterial capability of astaxanthin and in agreement with the results of the in silico evaluations, where the free energy scores of astaxanthins' complexes with topoisomerase IV ParC and ParE were higher than those of the reference antibiotics. These observations were consistent with the structural stability and compactness of the complexes as astaxanthin was observed to be more stable against topoisomerase IV ParC and ParE than DNA Gyrase A and B. Put together, findings from this study underscored the nature and mechanism of antibacterial action of astaxanthin that could suggest practical approaches in enhancing our current knowledge of antibacterial arsenal and aid in the novel development of alternative natural topo2A inhibitor.
Collapse
|
10
|
Cottrell JJ, Le HH, Artaiz O, Iqbal Y, Suleria HA, Ali A, Celi P, Dunshea FR. Recent advances in the use of phytochemicals to manage gastrointestinal oxidative stress in poultry and pigs. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an20667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Plants are integral components of pig and poultry feed, and aside from their raw nutritive value, some phytochemicals contain bioactive compounds. The aim of the present paper is to review recent advances in the use of some phytochemicals in pig and poultry feed, focusing on the examples of isoquinoline alkaloids, polyphenol rich sugarcane extracts and superoxide dismutase-rich melon pulp extracts. As gut health is critical for efficient production, the review will focus on recent results modulating oxidative stress within the gastrointestinal tract and the potential mechanisms of action.
Collapse
|
11
|
Mourenza Á, Gil JA, Mateos LM, Letek M. Oxidative Stress-Generating Antimicrobials, a Novel Strategy to Overcome Antibacterial Resistance. Antioxidants (Basel) 2020; 9:antiox9050361. [PMID: 32357394 PMCID: PMC7278815 DOI: 10.3390/antiox9050361] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023] Open
Abstract
Antimicrobial resistance is becoming one of the most important human health issues. Accordingly, the research focused on finding new antibiotherapeutic strategies is again becoming a priority for governments and major funding bodies. The development of treatments based on the generation of oxidative stress with the aim to disrupt the redox defenses of bacterial pathogens is an important strategy that has gained interest in recent years. This approach is allowing the identification of antimicrobials with repurposing potential that could be part of combinatorial chemotherapies designed to treat infections caused by recalcitrant bacterial pathogens. In addition, there have been important advances in the identification of novel plant and bacterial secondary metabolites that may generate oxidative stress as part of their antibacterial mechanism of action. Here, we revised the current status of this emerging field, focusing in particular on novel oxidative stress-generating compounds with the potential to treat infections caused by intracellular bacterial pathogens.
Collapse
|