1
|
Zaki AG, Yousef SA, Hasanien YA. Bioharvesting and improvement of nano-silica yield from bagasse by irradiated Curvularia spicifera. BMC Microbiol 2025; 25:66. [PMID: 39915706 PMCID: PMC11800436 DOI: 10.1186/s12866-025-03770-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 01/13/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Sugarcane bagasse is an organic waste material abundant in silica. Silica is a very significant inorganic substance that is widely employed in a variety of industrial applications.This study displays an eco-friendly and inexpensive biotransformation process producing silica nanoparticles (SNPs) using a primarily reported Curvularias picifera strain under solid-state fermentation (SSF) on bagasse as a starting material. The produced SNps were characterized by XRD, DLS, Zeta sizer, FT-IR, SEM, and TEM analyses. The silica bioleaching ability of C. spicifera was further amended by exposure to gamma irradiation at a dose of 750 Gy. The biotransformation process was additionally optimized by applying response surface methodology (RSM). RESULT According to screening experiments, the selected promising fungal isolate was identified as Curvularia spicifera AUMC 15532. The SNPs fabrication was significantly enhanced by gamma irradiation (optimal dose 750 Gy) and response surface methodology for the first time. The attained SNps' size ranged from 30.6-130.4 nm depending on the biotransformation conditions employed in the statistical model, which is available for numerous applications. The XRD shows the amorphous nature of the fabricated SNPs, whereas the FTIR analysis revealed the three characteristic bands of SNPs. The outcomes of the response surface optimization demonstrated that the model exhibited an adequate degree of precision, as evidenced by the higher R2 value (0.9511) and adjusted R2 value (0.8940), which confirmed the model's close correspondence with the experimental data. A gamma irradiation dose of 750 Gy was optimal for a significant increase in the silica bioleaching activity by C. spicifera fermented bagasse (71.4% increase compared to the non-irradiated strain).
Collapse
Affiliation(s)
- Amira G Zaki
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Samah A Yousef
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Yasmeen A Hasanien
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
2
|
Mwaheb MA, Hasanien YA, Zaki AG, Abdel-Razek AS, Al Halim LRA. Fusarium verticillioides pigment: production, response surface optimization, gamma irradiation and encapsulation studies. BMC Biotechnol 2024; 24:84. [PMID: 39472859 PMCID: PMC11523785 DOI: 10.1186/s12896-024-00909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Natural pigments are becoming more significant because of the rising cost of raw materials, pollution, and the complexity of synthetic pigments. Compared to synthetic pigments, natural pigments exhibit antimicrobial properties and is less allergic. Pigments from microbial sources could easily be obtained in an inexpensive culture media, produced in high yields, and microbes are capable of producing different colored pigments. Searching for new sources for natural pigments to replace synthetic ones in food applications has become an urgent necessity, but the instability of these compounds is sometimes considered one of the obstacles that reduce their application. Encapsulation provides an ideal solution for natural dye protection through a controlled release strategy. Thus, this study aims at isolation of several soil fungi and subsequent screening their pigment production ability. The chosen pigment-producing fungal strain underwent full identification. The produced pigment was extracted with ethyl acetate and estimated spectrophotometrically. As there is a necessity to obtain a high pigment yield for efficient industrial application, the best production medium was tested, optimum conditions for maximum dye production were also investigated through the response surface methodology, and gamma irradiation was also employed to enhance the fungal productivity. Encapsulation of the produced pigment into chitosan microsphere was tested. The pigment release under different pH conditions was also investigated. RESULTS A new strain, Fusarium verticillioides AUMC 15934 was chosen and identified for a violet pigment production process. Out of four different media studied, the tested strain grew well on potato dextrose broth medium. Optimum conditions are initial medium pH 8, 25 °C-incubation temperature, and for 15-day incubation period under shaking state. Moreover, a 400 Gy irradiation dose enhanced the pigment production. Chitosan microsphere loaded by the pigment was successfully prepared and characterized by infrared spectroscopy and scanning electron microscopy. CONCLUSION This irradiated Fusarium strain provides a more economically favorable source for production of a natural violet dye with an optimum productivity, enhanced yield, and improved properties (such as, enhanced stability, controlled release, and bioaccessibility) by encapsulation with chitosan for efficient application in food industry.
Collapse
Affiliation(s)
- Mai Ali Mwaheb
- Botany Department, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt
| | - Yasmeen A Hasanien
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Amira G Zaki
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Alaa S Abdel-Razek
- Radiation Protection and Safety Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Laila R Abd Al Halim
- Agricultural Microbiology Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| |
Collapse
|
3
|
Bacha H, Hussain A, Murad W, Irshad M, Hamayun M, Al-Huqail AA, Iqbal A, Ali S. Ultraviolet-enhanced detoxification of chromate and protection of Brassica napus by Aspergillus sojae SH 20. Heliyon 2024; 10:e35501. [PMID: 39170427 PMCID: PMC11336734 DOI: 10.1016/j.heliyon.2024.e35501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
The pervasive issue of heavy metal contamination in agricultural lands poses significant concerns and has wide-ranging implications for ecosystems. However, an encouraging solution lies in exploiting the potential of fungal endophytes to alleviate these detrimental effects. This study emphasized on improving the growth-promoting and chromium-alleviating capabilities of fungal endophytes, particularly Aspergillus sojae strain SH20, through ultraviolet (UV) irradiation. Following UV treatment, SH20 exhibited significantly enhanced growth-promoting and chromium-alleviating capabilities in comparison to its non-irradiated counterpart. Distinctly, the UV-treated SH20 strain demonstrated an improved ability to accumulate and reduce toxic chromate in the soil, effectively addressing the growth constraints imposed by elevated chromium levels in Brassica napus L. The UV-irradiated SH20 variant boosted shoot length up to 3 times that of the control. Similarly, this fungal strain displayed a remarkable increase in the total fresh weight of the seedlings, recording nearly 17 times greater than the control. The isolate treated with UV light reduced the absorption of chromium by about 3 times in the roots, helping the young plants to grow well even when exposed to chromate stress. A drop in root colonization by the UV-treated strain further resulted in reduced chromate absorption by the roots. Also, the strain showed great skill in boosting the host's antioxidant defenses by reducing the buildup of harmful reactive oxygen species (ROS), increasing the removal of ROS, and improving the plant's antioxidant levels, including phenols and flavonoids. When the host plants were exposed to 25 ppm of Cr stress, the UV-irradiated variant SH 20 stimulated the production of flavonoids (246 μg/ml) and phenols (952 μg/ml) in comparison to the control (with 220 μg/ml of flavonoids and 919 μg/ml of phenols). In conclusion, this report highlights how exposing the A. sojae strain SH20 to UV light has the potential to enhance its abilities to promote growth and bioremediate. This suggests a promising solution for addressing heavy metal contamination in agricultural lands.
Collapse
Affiliation(s)
- Hamza Bacha
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Anwar Hussain
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Waheed Murad
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Irshad
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Hamayun
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Asma A. Al-Huqail
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Amjad Iqbal
- Department of Food Science & Technology, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Republic of Korea
| |
Collapse
|
4
|
Abd Elkader RS, Mohamed MK, Hasanien YA, Kandeel EM. Experimental and Modeling Optimization of Strontium Adsorption on Microbial Nanocellulose, Eco-friendly Approach. J CLUST SCI 2023. [DOI: 10.1007/s10876-023-02454-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/22/2023] [Indexed: 09/02/2023]
Abstract
AbstractGreen synthesized cellulose nanocrystals (CNCs) was prepared using Neurospora intermedia, characterized, and used to remove Strontium ions (Sr2+) from an aqueous solution with high efficiency. The characterization of CNCs was performed using a UV-Vis Spectrophotometer, Dynamic Light Scattering (DLS), Zeta Potential (ZP), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), and Scanning Electron Microscopy (SEM) mapping, EDX elemental analysis and BET surface analyzer. In this study, Response Surface Methodology (RSM) based on Box-Behnken Design (BBD) was successfully applied for the first time to optimize the dynamic adsorption conditions for the maximum removal of Sr2+ ions from aqueous solutions using CNCs as adsorbent. The effects of parameters, such as initial concentration of Sr2+ (50–500 ppm), adsorbent dosage (0.05–0.2 g/50ml), and contact time (15–120 min.) on removal efficiency were investigated. A mathematical model was studied to predict the removal performance. The significance and adequacy of the model were surveyed using the analysis of variance (ANOVA). The results showed that the second-order polynomial model is suitable for the prediction removal of Sr2+ with regression coefficient (R2 = 97.41%). The highest sorption capacity value of Sr2+ was obtained (281.89 mg/g) at the adsorbent dosage of 0.05 g/50 ml, contact time of 120 min., and the pollutant (Sr2+) concentration of 275 ppm.
Collapse
|
5
|
El-Sayed ESR, Zaki AG. Unlocking the biosynthetic potential of Penicillium roqueforti for hyperproduction of the immunosuppressant mycophenolic acid: Gamma radiation mutagenesis and response surface optimization of fermentation medium. Biotechnol Appl Biochem 2023; 70:306-317. [PMID: 35481612 DOI: 10.1002/bab.2353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/10/2022] [Indexed: 11/09/2022]
Abstract
Based on the broad clinical utility of the immunosuppressant mycophenolic acid (MPA), this article aims to intensify the biosynthetic potential of Penicillium roqueforti for more effective hyperproduction of the drug. Several mutants were generated from irradiation mutagenesis and screened. Two strains (GM1013 and GM1093) presented an elevated MPA productivity with significant yield constancy over 10 subsequent generations. By investigating the effect of some phosphorous sources and mineral salts on MPA production by the two mutants, KH2 PO4 and FeSO4 ·7H2 O were most preferred by the two mutants for higher MPA production rates. Statistics-dependent experimental designs were also employed for optimizing medium components for maximum MPA production. Medium components were primarily screened using the Plackett-Burman model to demonstrate the most important components that most significantly affect MPA production. The concentrations of these significant components were then optimized through a central composite rotatable model. In conclusion, gamma-radiation mutation and response surface optimization resulted in a promising MPA productivity by P. roqueforti GM1013. To our knowledge, the MPA-yield achieved in this study (2933.32 mg L-1 ) is the highest reported by academic laboratories from P. roqueforti cultures, which could be of economic value for a prospective large industrialized application.
Collapse
Affiliation(s)
- El-Sayed R El-Sayed
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Amira G Zaki
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
6
|
Anti-cancer, anti-inflammatory and antioxidant effects of Vit-A/C@SeNPs in mutual diethylnitrosamine and carbon tetrachloride induced hepatocellular damage in albino rats. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Zaki AG, Hasanien YA, Abdel-Razek AS. Biosorption optimization of lead(II) and cadmium(II) ions by two novel nanosilica-immobilized fungal mutants. J Appl Microbiol 2022; 133:987-1000. [PMID: 35578549 DOI: 10.1111/jam.15624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/26/2022]
Abstract
AIMS This study aims at immobilization of fungal mutants on nanosilica-carriers for designing efficient biosorbents as a significant new technology for decontamination practices and maximizing their heavy metal (HM) sorption proficiency through the experimental design methodology. MATERIALS AND RESULTS Endophytic fungal mutant strains, Chaetomium globosum El26 mutant and Alternaria alternata S5 mutant were heat inactivated then immobilized, each separately, on nanosilica (NSi) carriers to formulate two separated nano-biosorbents. The formulated NSi-Chaetomium globosum El26 mutant (NSi-Chae El26 m) was investigated for Pb+2 uptake while, the formulated NSi-Alternaria alternata S5 mutant (NSi-Alt S5 m) was investigated for Cd+2 uptake, each through a batch equilibrium protocol. Before and after the metal sorption process, the designed nano-biosorbents were characterized via scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier Transform Infrared analysis. Sorption pH, contact time, sorbent concentration, and initial HM concentration, were statistically optimized using a Box-Behnken design (BBD). Results showed that NSi-Chae El26 m was efficient in Pb+2 uptake with maximum biosorption capacities of 199.0 while, NSi-Alt S5 m was efficient in Cd+2 uptake with maximum biosorption capacities of 162.0 mg∙g-1 . Moreover, the equilibrium data indicated that the adsorption of Pb+2 and Cd+2 by the tested nano-biosorbents fitted to the Freundlich isotherm. CONCLUSIONS The formulated nano-biosorbents resulted in higher HM biosorption of metal ions from aqueous solution than that obtained by the free fungal biomass. The biosorption statistical modelling described the interactions between the tested sorption parameters and predicted the optimum values for maximum HM biosorption capacity by the two designed nano-biosorbents. SIGNIFICANCE AND IMPACT OF THE STUDY These findings verify that members of the endophytic fungal genera Alternaria and Chaetomium are suitable to produce nano-biosorbents for decontamination practices after treatment by gamma mutagenesis, heat inactivation, and nanosilica immobilization. Moreover, statistical optimization can assist to evaluate the optimal conditions to produce such bioremediation material.
Collapse
Affiliation(s)
- Amira G Zaki
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Yasmeen A Hasanien
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Alaa S Abdel-Razek
- Radiation Protection and Safety Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
8
|
El-Sayed ESR, Mousa SA, Abdou DA, Abo El-Seoud MA, Elmehlawy AA, Mohamed SS. Exploiting the exceptional biosynthetic potency of the endophytic Aspergillus terreus in enhancing production of Co3O4, CuO, Fe3O4, NiO, and ZnO nanoparticles using bioprocess optimization and gamma irradiation. Saudi J Biol Sci 2022; 29:2463-2474. [PMID: 35531225 PMCID: PMC9072909 DOI: 10.1016/j.sjbs.2021.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 12/17/2022] Open
Abstract
Developing a suitable applicative process and scaling up the microbial synthesis of nanomaterials is an attractive and emerging prospect for a future sustainable industrial production. In this paper, optimization of fermentation conditions for enhanced production of Co3O4, CuO, Fe3O4, NiO, and ZnO nanoparticles by the endophytic A. terreus ORG-1 was studied. Different cultivation conditions were evaluated. Then, a response surface methodology program was used to optimize physical conditions controlling the biosynthesis of these NPs. Finally, the use of gamma irradiation for improvement of NPs’ production was adopted. Under the optimum conditions and after gamma irradiation, the final yields of the respective NPs reached 545.71, 651.67, 463.19, 954.88, 1356.42 mg L−1. To the best of our knowledge, this is the first report on the production and enhancement of different types of nanomaterials from one microbial culture that can open up the way towards the industrialization of the microbial production of nanomaterials.
Collapse
|