1
|
Ladetto MF, Gantner ME, Rodenak-Kladniew BE, Rodriguez S, Cuestas ML, Talevi A, Castro GR. Promising Prodiginins Biological Activities. Chem Biodivers 2025:e202402940. [PMID: 40244866 DOI: 10.1002/cbdv.202402940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 04/19/2025]
Abstract
Prodiginins are a large family of at least 34 pyrrolic compounds, including the well-studied red pigment prodigiosin. Prodiginins are produced by several microorganisms displaying broad biological activities, including antimicrobial, antiviral, antiparasitic, antiproliferative, and immunosuppressive activities. The present review aims to compile and analyze the main physicochemical and biological properties and mechanisms of action of prodiginins for microbial disease treatment, particularly SARS-CoV-2 disease and opportunistic infections related to COVID-19. The interaction of prodigiosin, as a model molecule, with cellular membranes, potential drug delivery devices, and toxicological studies, and in silico studies using molecular dynamics showed that the prodigiosin motif, which interacts with lipids, opens a new door for the potential therapeutic use of prodiginins.
Collapse
Affiliation(s)
- María F Ladetto
- Laboratorio de Nanobiomateriales, CINDEFI-Departamento de Química, Facultad de Ciencias Exactas, CONICET-UNLP (CCT La Plata), La Plata, Buenos Aires, Argentina
- Institute for Research in Microbiology and Medical Parasitology (IMPaM), University of Buenos Aires, Buenos Aires, Argentina
| | - Melisa E Gantner
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - Boris E Rodenak-Kladniew
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET-UNLP, CCT-La Plata, Facultad de Ciencias Médicas, La Plata, Argentina
| | - Santiago Rodriguez
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - María L Cuestas
- Institute for Research in Microbiology and Medical Parasitology (IMPaM), University of Buenos Aires, Buenos Aires, Argentina
| | - Alan Talevi
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - Guillermo R Castro
- Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo Andre, Sao Paulo, Brazil
| |
Collapse
|
2
|
Odchimar NMO, Macalalad MAB, Orosco FL. From antibiotic to antiviral: computational screening reveals a multi-targeting antibiotic from Streptomyces spp. against Nipah virus fusion proteins. Mol Divers 2025; 29:1541-1555. [PMID: 39060858 DOI: 10.1007/s11030-024-10932-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Nipah Virus is a re-emerging zoonotic paramyxovirus that poses a significant threat to both swine industry and human health. The pursuit of potential antiviral agents with both preventive and therapeutic properties holds promise for targeting such viruses. To expedite this search, leveraging computational biology is essential. Streptomyces is renowned for its capacity to produce large and diverse metabolites with promising bioactivities. In the current study, we conducted a comprehensive structure-based virtual screening of 6524 Streptomyces spp. metabolites sourced from the StreptomeDB database to evaluate their potential inhibitory effects on three Nipah virus fusion (NiVF) protein conformations: NiVF pre-fusion 1-mer (NiVF-1mer), pre-fusion 3-mer (NiVF-3mer), and NiVF post-fusion (NiVF-PoF). Prior to virtual screening, the drug-likeness of Streptomyces spp. compounds was profiled using ADMET properties. From the 913 ADMET-filtered compounds, the subsequent targeted and confirmatory blind docking analysis revealed that S896 or virginiamycin M1, a known macrolide antibiotic, showed a maximum binding affinity with the NiVF proteins, suggesting a multi-targeting inhibitory property. In addition, the 200-ns molecular dynamics simulation and MM/PBSA analyses revealed stable and strong binding affinity between the NiVF-S896 complexes, indicating favorable interactions between S896 and the target proteins. These findings suggest the potential of virginiamycin M1, an antibiotic, as a promising multi-targeting antiviral drug. However, in vitro and in vivo experimental validations are necessary to assess their safety and efficacy.
Collapse
Affiliation(s)
- Nyzar Mabeth O Odchimar
- Virology and Vaccine Research and Development Program, Department of Science and Technology - Industrial Technology Development Institute, 1631, Taguig City, Metro Manila, Philippines
| | - Mark Andrian B Macalalad
- Virology and Vaccine Research and Development Program, Department of Science and Technology - Industrial Technology Development Institute, 1631, Taguig City, Metro Manila, Philippines
| | - Fredmoore L Orosco
- Virology and Vaccine Research and Development Program, Department of Science and Technology - Industrial Technology Development Institute, 1631, Taguig City, Metro Manila, Philippines.
- S&T Fellows Program, Department of Science and Technology, 1631, Taguig City, Metro Manila, Philippines.
- Department of Biology, College of Arts and Sciences, University of the Philippines - Manila, 1000, Manila, Metro Manila, Philippines.
| |
Collapse
|
3
|
Yoon J, Yasumoto-Hirose M, Kasai H. Flagellimonas algarum sp. nov., isolated from dense mats of filamentous algae. Folia Microbiol (Praha) 2025; 70:455-462. [PMID: 39331279 DOI: 10.1007/s12223-024-01200-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
A novel Gram-stain-negative, strictly aerobic, rod-shaped, light-yellow-pigmented, and chemo-organoheterotrophic bacterium, designated DF-77T, was isolated from dense mats of filamentous algae collected in March 2004 at Okinawa in Japan. The microorganism grew at 0-2.0% NaCl concentrations (w/v), pH 6.0-9.0, and 20-30 °C. The 16S rRNA gene sequence-based phylogenetic tree demonstrated that the strain DF-77T is a novel member of the family Flavobacteriaceae and was greatly related to Flagellimonas nanhaiensis SM1704T with sequence similarity of 95.5%. The main fatty acids were iso-C15:1 G, iso-C15:0, and iso-C17:0 3-OH, and the only isoprenoid quinone was menaquinone-6. The dominant polar lipids were phosphatidylethanolamine, two unidentified aminolipids, an unidentified phosphoaminolipid, and four unidentified lipids. The genome size of strain DF-77T was 3.60 Mbp with a DNA G + C content of 47.5%. The average nucleotide identity (ANI) value between the genomes of strain DF-77T and its closely related species was 69.8-70.7%. The digital DNA - DNA hybridization (dDDH) value of strain DF-77T with the strain of F. nanhaiensis SM1704T was 16.8%. The genome of the strain DF-77T revealed that it encoded several genes involved in bio-macromolecule degradation, indicating a high potential for producing industrially useful enzymes. Consequently, the strain is described as a new species in the genus Flagellimonas, for which the name Flagellimonas algarum sp. nov., is proposed with the type strain DF-77T (= KCTC 72791T = NBRC 114251T).
Collapse
Affiliation(s)
- Jaewoo Yoon
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu, 42601, Republic of Korea.
| | - Mina Yasumoto-Hirose
- Marine Biotechnology Institute, 3-75-1 Heita, Kamaishi, Iwate, 026-0001, Japan
- Tropical Technology Plus, 12-75 Suzaki, Uruma, Okinawa, 904-2234, Japan
| | - Hiroaki Kasai
- Sanriku Education and Research Center for Marine Biosciences, Kitasato University School of Marine Biosciences, 160-4 Utou, Okirai, Sanriku-Cho, Ofunato, Iwate, 022-0101, Japan
| |
Collapse
|
4
|
Aarestrup PF, Aarestrup MF, JV Aarestrup B, Cheloni EP, Aarestrup FM. Long-term sublingual bacterial immunotherapy prevents ear, nose and throat infections: A real-life study. SAGE Open Med 2025; 13:20503121241309514. [PMID: 39867665 PMCID: PMC11760123 DOI: 10.1177/20503121241309514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/05/2024] [Indexed: 01/28/2025] Open
Abstract
Objective Bacterial extracts have been used for many years to prevent airway infections. Recent findings suggest that immunity can be trained by inducing an immunological memory in both the innate and acquired immune response. This real-life observational study investigated the potential of sublingual bacterial immunotherapy in the prevention of ear, nose, and throat infections. Methods Patients received sublingual bacterial immunotherapy for 12 months and were followed for 24 months. The number of ear, nose, and throat infection episodes from the previous year was recorded during the initial visit based on the patient's clinical history. Patients were then followed up with visits every 2 months, and the occurrence of ear, nose, and throat infection episodes was documented at 6, 12, 18, and 24 months after the start of the study. Results The results demonstrated a strong potential for preventing ear, nose, and throat infections, with a reduction in the number of episodes by 75.68%, 82.27%, 82.78%, and 89.88% at 6, 12, 18, and 24 months, respectively. No adverse effects related to sublingual bacterial immunotherapy administration were reported. Conclusion The results suggested that long-term sublingual bacterial immunotherapy is safe and effectively prevents ear, nose, and throat infections, even after treatment ends.
Collapse
Affiliation(s)
- Paula F Aarestrup
- Instituto de Assistência Médica ao Servidor Público Estadual de São Paulo, São Paulo, Brazil
| | - Matheus F Aarestrup
- Allergy and Immunology Service Hospitale Maternidade Therezinha de Jesus, Juiz de Fora, Brazil
| | - Beatriz JV Aarestrup
- Department of Morphology, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Edir P Cheloni
- Allergy and Immunology Service Hospitale Maternidade Therezinha de Jesus, Juiz de Fora, Brazil
| | - Fernando M Aarestrup
- Allergy and Immunology Service Hospitale Maternidade Therezinha de Jesus, Juiz de Fora, Brazil
| |
Collapse
|
5
|
Camerino I, Franco P, Bajetto A, Thellung S, Florio T, Stoppelli MP, Colucci-D’Amato L. Ruta graveolens, but Not Rutin, Inhibits Survival, Migration, Invasion, and Vasculogenic Mimicry of Glioblastoma Cells. Int J Mol Sci 2024; 25:11789. [PMID: 39519339 PMCID: PMC11546663 DOI: 10.3390/ijms252111789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive type of brain tumor, characterized by poor outcome and limited therapeutic options. During tumor progression, GBM may undergo the process of vasculogenic mimicry (VM), consisting of the formation of vascular-like structures which further promote tumor aggressiveness and malignancy. The resulting resistance to anti-angiogenetic therapies urges the identification of new compounds targeting VM. Extracts of natural plants may represent potential therapeutic tools. Among these, components of Ruta graveolens water extract (RGWE) display a wide range of biological activities. To test the effect of RGWE on human GBM and rat glioma cell line VM, tube formation on a gelled matrix was monitored. Quantitative assessment of VM formation shows the clear-cut inhibitory activity of RGWE. Unlike rutin, one of the most abundant extract components, the whole RGWE strongly reduced the migration and invasion of GBM tumor cells. Moreover, RGWE induced cell death of GBM patient-derived cancer stem cells and impaired VM at sub-lethal doses. Overall, our data reveal a marked RGWE-dependent inhibition of GBM cell survival, migration, invasion, and VM formation. Thus, the clear-cut ability of RGWE to counteract GBM malignancy deserves attention, holding the promise to bring natural products to clinical use, thus uncovering new therapeutic opportunities.
Collapse
Affiliation(s)
- Iolanda Camerino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Paola Franco
- Institute of Genetics and Biophysics “A. Buzzati Traverso” (IGB-ABT), National Research Council, 16149 Naples, Italy; (P.F.); (M.P.S.)
| | - Adriana Bajetto
- Department of Internal Medicine (DIMI), University of Genova, 16132 Genova, Italy; (A.B.); (S.T.)
| | - Stefano Thellung
- Department of Internal Medicine (DIMI), University of Genova, 16132 Genova, Italy; (A.B.); (S.T.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Tullio Florio
- Department of Internal Medicine (DIMI), University of Genova, 16132 Genova, Italy; (A.B.); (S.T.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Maria Patrizia Stoppelli
- Institute of Genetics and Biophysics “A. Buzzati Traverso” (IGB-ABT), National Research Council, 16149 Naples, Italy; (P.F.); (M.P.S.)
- Departmental Faculty of Medicine and Surgery, Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | - Luca Colucci-D’Amato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
- InterUniversity Center for Research in Neurosciences (CIRN), 80131 Naples, Italy
| |
Collapse
|
6
|
Chatterjee A, Khan R, Mukherjee T, Sahoo PP, Tiwari LN, Singh BN, Kumari R, Kumari A, Rai A, Ray S. Harnessing bacterial metabolites for enhanced cancer chemotherapy: unveiling unique therapeutic potentials. Arch Microbiol 2024; 206:449. [PMID: 39472338 DOI: 10.1007/s00203-024-04179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/10/2024]
Abstract
Cancer poses a serious threat to health globally, with millions diagnosed every year. According to Global Cancer Statistics 2024, about 20 million new cases were reported in 2022, and 9.7 million people worldwide died of this condition. Advanced therapies include combination of one or more treatment procedures, depending on the type, stage, and particular genetic constitution of the cancer, which may include surgery, radiotherapy, chemotherapy, immunotherapy, hormone therapy, targeted therapy, and stem cell transplant. Also, awareness about lifestyle changes, preventive measures and screening at early stages has reduced the incidence of the disease; still, there is a major failure in controlling the incidence of cancer because of its complex and multifaceted nature. With increasing interest in bacterial metabolites as possible novel and effective treatment options in cancer therapy, their main benefits include not only direct anticancer effects but also the modulation of the immune system and potential for targeted and combination therapies. They can therefore be used in combination with chemotherapy, radiotherapy, or immunotherapy to improve outcomes or reduce side effects. Furthermore, nanoparticle-based delivery systems have the potential to enhance the potency and safety of anticancer drugs by providing improved stability, targeted release, and controlled delivery.
Collapse
Affiliation(s)
- Aroni Chatterjee
- Department of Biotechnology, School of Biotechnology and Biosciences, Brainware University, Barasat, Kolkata, 700125, West Bengal, India
| | - Rajni Khan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, 844102, Bihar, India
| | - Triparna Mukherjee
- Department of Biotechnology, School of Biotechnology and Biosciences, Brainware University, Barasat, Kolkata, 700125, West Bengal, India
| | - Preity Pragnya Sahoo
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Laxmi Narayan Tiwari
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Basant Narain Singh
- Department of Botany, Pandit Deendayal Upadhyaya Shekhawati University, Sikar, Nawalgarh Road, Katrathal, Rajasthan, 332024, India
| | - Rashmi Kumari
- Department of Zoology, ZA Islamia College Siwan, Affiliated Unit of Jai Prakash University, Chapra, Bihar, 841226, India
| | - Anisha Kumari
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India
| | - Ankit Rai
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India.
| | - Shashikant Ray
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India.
| |
Collapse
|
7
|
Mahmoudi F, Jalayeri MHT, Montaseri A, MohamedKhosroshahi L, Baradaran B. Microbial natural compounds and secondary metabolites as Immunomodulators: A review. Int J Biol Macromol 2024; 278:134778. [PMID: 39153680 DOI: 10.1016/j.ijbiomac.2024.134778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Immunomodulatory therapies are beneficial strategies for the improvement of immune system function. Today, due to the increasing prevalence of immune disorders, cancer, and new viral diseases, there is a greater need to introduce immunomodulatory compounds with more efficiency and fewer side effects. Microbial derivatives are fertile and attractive grounds for discovering lots of novel compounds with various medical properties. The discovery of many natural compounds derived from bacterial sources, such as secondary metabolites with promising immunomodulating activities, represents the importance of this topic in drug discovery and emphasizes the necessity for a coherent source of study in this area. Considering this need, in this review, we aim to focus on the current information about the immunomodulatory effects of bacterial secondary metabolites and natural immunomodulators derived from microorganisms.
Collapse
Affiliation(s)
- Fariba Mahmoudi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Hadi Tajik Jalayeri
- Clinical Research Development Unit (CRDU), Sayad Shirazi Hospital Golestan University of Medical Sciences, Gorgan, Iran
| | - Azadeh Montaseri
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy.
| | - Leila MohamedKhosroshahi
- Department of Immunology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Abdel-Nasser A, Badr AN, Fathy HM, Ghareeb MA, Barakat OS, Hathout AS. Antifungal, antiaflatoxigenic, and cytotoxic properties of bioactive secondary metabolites derived from Bacillus species. Sci Rep 2024; 14:16590. [PMID: 39025896 PMCID: PMC11258281 DOI: 10.1038/s41598-024-66700-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
Aflatoxins (AFs) are hazardous carcinogens and mutagens produced by some molds, particularly Aspergillus spp. Therefore, the purpose of this study was to isolate and identify endophytic bacteria, extract and characterize their bioactive metabolites, and evaluate their antifungal, antiaflatoxigenic, and cytotoxic efficacy against brine shrimp (Artemia salina) and hepatocellular carcinoma (HepG2). Among the 36 bacterial strains isolated, ten bacterial isolates showed high antifungal activity, and thus were identified using biochemical parameters and MALDI-TOF MS. Bioactive metabolites were extracted from two bacterial isolates, and studied for their antifungal activity. The bioactive metabolites (No. 4, and 5) extracted from Bacillus cereus DSM 31T DSM, exhibited strong antifungal capabilities, and generated volatile organic compounds (VOCs) and polyphenols. The major VOCs were butanoic acid, 2-methyl, and 9,12-Octadecadienoic acid (Z,Z) in extracts No. 4, and 5 respectively. Cinnamic acid and 3,4-dihydroxybenzoic acid were the most abundant phenolic acids in extracts No. 4, and 5 respectively. These bioactive metabolites had antifungal efficiency against A. flavus and caused morphological alterations in fungal conidiophores and conidiospores. Data also indicated that both extracts No. 4, and 5 reduced AFB1 production by 99.98%. On assessing the toxicity of bioactive metabolites on A. salina the IC50 recorded 275 and 300 µg/mL, for extracts No. 4, and 5 respectively. Meanwhile, the effect of these extracts on HepG2 revealed that the IC50 of extract No. 5 recorded 79.4 µg/mL, whereas No. 4 showed no cytotoxic activity. It could be concluded that bioactive metabolites derived from Bacillus species showed antifungal and anti-aflatoxigenic activities, indicating their potential use in food safety.
Collapse
Affiliation(s)
- Aya Abdel-Nasser
- Food Toxicology and Contaminants Department, Food Industry and Nutrition Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Ahmed N Badr
- Food Toxicology and Contaminants Department, Food Industry and Nutrition Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Hayam M Fathy
- Agricultural Microbiology Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mosad A Ghareeb
- Medicinal Chemistry Department, Theodor Bilharz Research Institute, Kornaish El Nile, Warrak El-Haddar, Imbaba, (P.O. 30), Giza, 12411, Egypt
| | - Olfat S Barakat
- Agricultural Microbiology Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Amal S Hathout
- Food Toxicology and Contaminants Department, Food Industry and Nutrition Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
9
|
Tabassum N, Khan F, Jeong GJ, Jo DM, Kim YM. Silver nanoparticles synthesized from Pseudomonas aeruginosa pyoverdine: Antibiofilm and antivirulence agents. Biofilm 2024; 7:100192. [PMID: 38544742 PMCID: PMC10966193 DOI: 10.1016/j.bioflm.2024.100192] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 06/16/2025] Open
Abstract
The increasing incidence of antimicrobial resistance exhibited by biofilm-forming microbial pathogens has been recognized as one of the major issues in the healthcare sector. In the present study, nanomaterial-based controlling the biofilm and virulence properties has been considered an alternative approach. Pyoverdine (PVD) isolated from the Pseudomonas aeruginosa was utilized as a biological corona to synthesize silver nanoparticles (AgNPs), which will be helpful in a targeted action to microbial pathogens due to the recognition of the corona of the nanoparticles by the pathogenic membrane. Synthesized PVD-AgNPs were spherical to irregular, with an average size value of 251.87 ± 21.8 nm and zeta potential with a value of -36.51 ± 0.69 mV. The MIC value of PVD-AgNPs towards P. aeruginosa, Listeria monocytogenes, Staphylococcus aureus, Streptococcus mutans, Escherichia coli, and Candida albicans in the standard and host-mimicking media were observed in decreasing order in a multi-fold, such as standard growth media > sputum > synthetic human urine > saliva. Both the initial stage and the well-established biofilms of these microbial pathogens have been effectively inhibited and eradicated by PVD-AgNPs. PVD-AgNPs increase the susceptibility of tetracycline, PVD, and amphotericin B towards established mature mono- and mixed-species biofilms of S. aureus and C. albicans. Additionally, PVD-AgNPs attenuate several virulence properties, such as inhibition of protease activity, motility, and PVD and pyocyanin production in P. aeruginosa. The inhibition of gene expression of biofilm and virulence-associated genes in P. aeruginosa validates its phenotypic effects.
Collapse
Affiliation(s)
- Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Institute of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Du-Min Jo
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| |
Collapse
|
10
|
Yegin Z, Mamatova Z, Yurt MNZ, Tasbasi BB, Acar EE, Ucak S, Süleymanoğlu AA, Aydin A, Ozalp VC, Sudagidan M. A metagenomic survey of bacterial communities from kurut: The fermented cow milk in Kyrgyzstan. Chem Biodivers 2024; 21:e202301374. [PMID: 38230544 DOI: 10.1002/cbdv.202301374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/18/2024]
Abstract
Kurut is a traditional dry dairy product mostly consumed in Central Asia. In this study, the distribution of the dominant bacteria present in kurut samples (n=84) originated from seven (Chuy, Issyk-Kul, Talas, Naryn, Jalal-Abad, Osh, and Batken) regions in Kyrgyzstan were analyzed with Illumina iSeq100 platform. The dominant phylum detected was Firmicutes followed by Proteobacteria, Actinobacteria, Cyanobacteria/Chloroplast, and Tenericutes. The most abundant family detected was Lactobacillaceae followed by Streptococcaceae, Enterococcaceae, Chloroplast, and Leuconostocaceae. At the genus level, Lactobacillus was the predominant one in samples and Streptococcus, Enterococcus, Lactococcus, and Streptophyta followed this. Further comprehensive characterization analyses in kurut samples may have potential applications both in industrial starter culture developments and also future therapeutic approaches based on potential strains with probiotic properties.
Collapse
Affiliation(s)
- Zeynep Yegin
- Medical Laboratory Techniques Program, Vocational School of Health Services, Sinop University, 57000, Sinop, Türkiye
| | - Zhanylbubu Mamatova
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Avcilar, 34320, Istanbul, Türkiye
| | - Mediha Nur Zafer Yurt
- KIT-ARGEM R&D Center, Konya Food and Agriculture University, Meram, 42080, Konya, Türkiye
| | - Behiye Busra Tasbasi
- KIT-ARGEM R&D Center, Konya Food and Agriculture University, Meram, 42080, Konya, Türkiye
| | - Elif Esma Acar
- KIT-ARGEM R&D Center, Konya Food and Agriculture University, Meram, 42080, Konya, Türkiye
| | - Samet Ucak
- Department of Medical Biology and Genetics, School of Medicine, Istanbul Aydin University, Kucukcekmece, 34295, Istanbul, Türkiye
| | - Ali Anıl Süleymanoğlu
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Avcilar, 34320, Istanbul, Türkiye
| | - Ali Aydin
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Avcilar, 34320, Istanbul, Türkiye
| | - Veli Cengiz Ozalp
- Department of Medical Biology, Faculty of Medicine, Atilim University, 06830, Ankara, Türkiye
| | - Mert Sudagidan
- KIT-ARGEM R&D Center, Konya Food and Agriculture University, Meram, 42080, Konya, Türkiye
| |
Collapse
|
11
|
Tran NLH, Lam TQ, Duong PVQ, Doan LH, Vu MP, Nguyen KHP, Nguyen KT. Review on the Significant Interactions between Ultrafine Gas Bubbles and Biological Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:984-996. [PMID: 38153335 DOI: 10.1021/acs.langmuir.3c03223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Having sizes comparable with living cells and high abundance, ultrafine bubbles (UBs) are prone to inevitable interactions with different types of cells and facilitate alterations in physiological properties. The interactions of four typical cell types (e.g., bacterial, fungal, plant, and mammalian cells) with UBs have been studied over recent years. For bacterial cells, UBs have been utilized in creating the capillary force to tear down biofilms. The release of high amounts of heat, pressure, and free radicals during bubble rupture is also found to affect bacterial cell growth. Similarly, the bubble gas core identity plays an important role in the development of fungal cells. By the proposed mechanism of attachment of UBs on hydrophobin proteins in the fungal cell wall, oxygen and ozone gas-filled ultrafine bubbles can either promote or hinder the cell growth rate. On the other hand, reactive oxygen species (ROS) formation and mass transfer facilitation are two means of indirect interactions between UBs and plant cells. Likewise, the use of different gas cores in generating bubbles can produce different physical effects on these cells, for example, hydrogen gas for antioxidation against infections and oxygen for oxidation of toxic metal ions. For mammalian cells, the importance of investigating their interactions with UBs lies in the bubbles' action on cell viability as membrane poration for drug delivery can greatly affect cells' survival. UBs have been utilized and tested in forming the pores by different methods, ranging from bubble oscillation and microstream generation through acoustic cavitation to bubble implosion.
Collapse
Affiliation(s)
- Nguyen Le Hanh Tran
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Thien Quang Lam
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Phuong Vu Quynh Duong
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Linh Hai Doan
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Mai Phuong Vu
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Khang Huy Phuc Nguyen
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Khoi Tan Nguyen
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
12
|
Acharya K, Borborah S, Chatterjee A, Ghosh M, Bhattacharya A. A comprehensive profiling of quorum quenching by bacterial pigments identifies quorum sensing inhibition and antibiofilm action of prodigiosin against Acinetobacter baumannii. Arch Microbiol 2023; 205:364. [PMID: 37906317 DOI: 10.1007/s00203-023-03710-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023]
Abstract
Bacterial pigments represent a diverse group of secondary metabolites, which confer fitness advantages to the producers while residing in communities. The bioactive potential of such metabolites, including antimicrobial, anticancer, and immunomodulation, are being explored. Reckoning that a majority of such pigments are produced in response to quorum sensing (QS) mediated expression of biosynthetic gene clusters and, in turn, influence cell-cell communication, systemic profiling of the pigments for possible impact on QS appears crucial. A systemic screening of bacterial pigments for QS-inhibition combined with exploration of antibiofilm and antimicrobial action against Acinetobacter baumannii might offer viable alternatives to combat the priority pathogen. Major bacterial pigments are classified (clustered) based on their physicochemical properties, and representatives of the clusters are screened for QS inhibition. The screen highlighted prodigiosin as a potent quorum quencher, although its production from Serratia marcescens appeared to be QS-independent. In silico analysis indicated potential interactions between AbaI and AbaR, two major QS regulators in A. baumannii, and prodigiosin, which impaired biofilm formation, a major QS-dependent process in the bacteria. Prodigiosin augmented antibiotic action of ciprofloxacin against A. baumannii biofilms. Cell viability analysis revealed prodigiosin to be modestly cytotoxic against HEK293, a non-cancer human cell line. While developing dual-species biofilm, prodigiosin producer S. marcescens significantly impaired the fitness of A. baumannii. Enhanced susceptibility of A. baumannii toward colistin was also noted while growing in co-culture with S. marcescens. Antibiotic resistant isolates demonstrated varied responsiveness against prodigiosin, with two resistant strains demonstrating possible collateral sensitivity. Collectively, the results underpin the prospect of a prodigiosin-based therapeutic strategy in combating A. baumannii infection.
Collapse
Affiliation(s)
- Kusumita Acharya
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd., Kolkata, 700126, India
| | - Sonjukta Borborah
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd., Kolkata, 700126, India
| | - Abhishek Chatterjee
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd., Kolkata, 700126, India
| | - Mallika Ghosh
- Dr. Lal PathLabs-Kolkata Reference Lab, Newtown, Kolkata, 700156, India
| | - Arijit Bhattacharya
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd., Kolkata, 700126, India.
| |
Collapse
|
13
|
Alharbi MA, Alrehaili AA, Albureikan MOI, Gharib AF, Daghistani H, Bakhuraysah MM, Aloraini GS, Bazuhair MA, Alhuthali HM, Ghareeb A. In vitro studies on the pharmacological potential, anti-tumor, antimicrobial, and acetylcholinesterase inhibitory activity of marine-derived Bacillus velezensis AG6 exopolysaccharide. RSC Adv 2023; 13:26406-26417. [PMID: 37671337 PMCID: PMC10476021 DOI: 10.1039/d3ra04009g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
In the current study, Bacillus velezensis AG6 was isolated from sediment samples in the Red Sea, identified by traditional microbiological techniques and phylogenetic 16S rRNA sequences. Among eight isolates screened for exopolysaccharide (EPS) production, the R6 isolate was the highest producer with a significant fraction of EPS (EPSF6, 5.79 g L-1). The EPSF6 molecule was found to have a molecular weight (Mw) of 2.7 × 104 g mol-1 and a number average (Mn) of 2.6 × 104 g mol-1 when it was analyzed using GPC. The FTIR spectrum indicated no sulfate but uronic acid (43.8%). According to HPLC, the EPSF6 fraction's monosaccharides were xylose, galactose, and galacturonic acid in a molar ratio of 2.0 : 0.5 : 2.0. DPPH, H2O2, and ABTS tests assessed EPSF6's antioxidant capabilities at 100, 300, 500, 1000, and 1500 μg mL-1 for 15, 60, 45, and 60 minutes. The overall antioxidant activities were dose- and time-dependently increased, and improved by increasing concentrations from 100 to 1500 μg mL-1 after 60 minutes and found to be 91.34 ± 1.1%, 80.20 ± 1.4% and 75.28 ± 1.1% respectively. Next, EPSF6 displayed considerable inhibitory activity toward the proliferation of six cancerous cell lines. Anti-inflammatory tests were performed using lipoxygenase (5-LOX) and cyclooxygenase (COX-2). An MTP turbidity assay method was applied to show the ability of EPSF6 to inhibit Gram-positive bacteria, Gram-negative bacteria, and antibiofilm formation. Together, this study sheds light on the potential pharmacological applications of a secondary metabolite produced by marine Bacillus velezensis AG6. Its expected impact on human health will increase as more research and studies are conducted globally.
Collapse
Affiliation(s)
- Maha A Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Amani A Alrehaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Mona Othman I Albureikan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Amal F Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Hussam Daghistani
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University Jeddah 21589 Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Maha M Bakhuraysah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Ghfren S Aloraini
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University Al-Kharj 11942 Saudi Arabia
| | - Mohammed A Bazuhair
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Hayaa M Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Ahmed Ghareeb
- Botany and Microbiology Department, Faculty of Science, Suez Canal University Ismailia 41522 Egypt
| |
Collapse
|
14
|
Ferreira MRA, Lima LB, Santos ECF, Machado JCB, Silva WAV, Paiva PMG, Napoleão TH, Soares LAL. Eugenia uniflora: a promising natural alternative against multidrug-resistant bacteria. BRAZ J BIOL 2023; 83:e274084. [PMID: 37585932 DOI: 10.1590/1519-6984.274084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/03/2023] [Indexed: 08/18/2023] Open
Abstract
This work aimed to evaluate the chemical composition, antioxidant and antimicrobial activities from crude extract and fractions from leaves of Eugenia uniflora Linn. The crude extract was obtained by turbo extraction and their fractions by partitioning. Chromatographic analysis were performed, and the antioxidant capacity was verified by two methods (DPPH• and ABTS•+). The Minimal Inhibitory/Bactericidal Concentration were conducted against twenty-two bacteria, selecting five strains susceptible to extract/fractions and resistant to the antibiotics tested. Ampicillin, azithromycin, ciprofloxacin, and gentamicin were associated with Ethyl Acetate Fraction (EAF) against multidrug-resistant strains in modulatory and checkerboard tests. The chromatographic data showed gallic acid, ellagic acid, and myricitrin in crude extract, with enrichment in the EAF. The electron transfer activity demonstrated in the antioxidant tests is related to the presence of flavonoids. The Gram-positive strains were more susceptible to EAF, and their action spectra were improved by association, comprising Gram-negative bacilli. Synergisms were observed to ciprofloxacin and gentamicin against Pseudomonas aeruginosa colistin-resistant. The results demonstrate that the extract and enriched fraction obtained from the leaves of E. uniflora act as a promising natural alternative against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- M R A Ferreira
- Universidade Federal de Pernambuco, Departamento de Ciências Farmacêuticas, Laboratório de Farmacognosia, Recife, PE, Brasil
| | - L B Lima
- Universidade Federal de Pernambuco, Departamento de Ciências Farmacêuticas, Laboratório de Farmacognosia, Recife, PE, Brasil
| | - E C F Santos
- Universidade Federal de Pernambuco, Departamento de Ciências Farmacêuticas, Laboratório de Farmacognosia, Recife, PE, Brasil
| | - J C B Machado
- Universidade Federal de Pernambuco, Departamento de Ciências Farmacêuticas, Laboratório de Farmacognosia, Recife, PE, Brasil
- Universidade Federal de Pernambuco, Programa de Pós-Graduação em Ciências Farmacêuticas, Recife, PE, Brasil
| | - W A V Silva
- Universidade Federal de Pernambuco, Departamento de Ciências Farmacêuticas, Laboratório de Farmacognosia, Recife, PE, Brasil
- Universidade Federal de Pernambuco, Programa de Pós-Graduação em Ciências Farmacêuticas, Recife, PE, Brasil
| | - P M G Paiva
- Universidade Federal de Pernambuco, Departamento de Bioquímica, Laboratório de Bioquímica de Proteínas, Recife, PE, Brasil
| | - T H Napoleão
- Universidade Federal de Pernambuco, Departamento de Bioquímica, Laboratório de Bioquímica de Proteínas, Recife, PE, Brasil
| | - L A L Soares
- Universidade Federal de Pernambuco, Departamento de Ciências Farmacêuticas, Laboratório de Farmacognosia, Recife, PE, Brasil
- Universidade Federal de Pernambuco, Programa de Pós-Graduação em Ciências Farmacêuticas, Recife, PE, Brasil
| |
Collapse
|
15
|
Rusu AV, Trif M, Rocha JM. Microbial Secondary Metabolites via Fermentation Approaches for Dietary Supplementation Formulations. Molecules 2023; 28:6020. [PMID: 37630272 PMCID: PMC10458110 DOI: 10.3390/molecules28166020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Food supplementation formulations refer to products that are designed to provide additional nutrients to the diet. Vitamins, dietary fibers, minerals and other functional compounds (such as antioxidants) are concentrated in dietary supplements. Specific amounts of dietary compounds are given to the body through food supplements, and these include as well so-called non-essential compounds such as secondary plant bioactive components or microbial natural products in addition to nutrients in the narrower sense. A significant social challenge represents how to moderately use the natural resources in light of the growing world population. In terms of economic production of (especially natural) bioactive molecules, ways of white biotechnology production with various microorganisms have recently been intensively explored. In the current review other relevant dietary supplements and natural substances (e.g., vitamins, amino acids, antioxidants) used in production of dietary supplements formulations and their microbial natural production via fermentative biotechnological approaches are briefly reviewed. Biotechnology plays a crucial role in optimizing fermentation conditions to maximize the yield and quality of the target compounds. Advantages of microbial production include the ability to use renewable feedstocks, high production yields, and the potential for cost-effective large-scale production. Additionally, it can be more environmentally friendly compared to chemical synthesis, as it reduces the reliance on petrochemicals and minimizes waste generation. Educating consumers about the benefits, safety, and production methods of microbial products in general is crucial. Providing clear and accurate information about the science behind microbial production can help address any concerns or misconceptions consumers may have.
Collapse
Affiliation(s)
- Alexandru Vasile Rusu
- CENCIRA Agrofood Research and Innovation Centre, Ion Meșter 6, 400650 Cluj-Napoca, Romania;
| | - Monica Trif
- Food Research Department, Centre for Innovative Process Engineering (CENTIV) GmbH, 28857 Syke, Germany
| | - João Miguel Rocha
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| |
Collapse
|
16
|
MacNair CR, Tsai CN, Rutherford ST, Tan MW. Returning to Nature for the Next Generation of Antimicrobial Therapeutics. Antibiotics (Basel) 2023; 12:1267. [PMID: 37627687 PMCID: PMC10451936 DOI: 10.3390/antibiotics12081267] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Antibiotics found in and inspired by nature are life-saving cures for bacterial infections and have enabled modern medicine. However, the rise in resistance necessitates the discovery and development of novel antibiotics and alternative treatment strategies to prevent the return to a pre-antibiotic era. Once again, nature can serve as a source for new therapies in the form of natural product antibiotics and microbiota-based therapies. Screening of soil bacteria, particularly actinomycetes, identified most of the antibiotics used in the clinic today, but the rediscovery of existing molecules prompted a shift away from natural product discovery. Next-generation sequencing technologies and bioinformatics advances have revealed the untapped metabolic potential harbored within the genomes of environmental microbes. In this review, we first highlight current strategies for mining this untapped chemical space, including approaches to activate silent biosynthetic gene clusters and in situ culturing methods. Next, we describe how using live microbes in microbiota-based therapies can simultaneously leverage many of the diverse antimicrobial mechanisms found in nature to treat disease and the impressive efficacy of fecal microbiome transplantation and bacterial consortia on infection. Nature-provided antibiotics are some of the most important drugs in human history, and new technologies and approaches show that nature will continue to offer valuable inspiration for the next generation of antibacterial therapeutics.
Collapse
Affiliation(s)
- Craig R. MacNair
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA 94080, USA;
| | - Caressa N. Tsai
- School of Law, University of California, Berkeley, Berkeley, CA 94704, USA;
| | - Steven T. Rutherford
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA 94080, USA;
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA 94080, USA;
| |
Collapse
|
17
|
Otdushkina LY, Zakharova YV, Kholodov AA, Pyanzova TV. Microbiological evaluation of probiotic therapy in patients with pulmonary tuberculosis. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2023; 13:517-525. [DOI: 10.15789/2220-7619-meo-7223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Patients with pulmonary tuberculosis and multiple pathogen resistance (MDR) develop persistent disorders of the intestinal microbiome during prolonged multicomponent chemotherapy requiring correction. However, there is limited data on the use of bacterial drugs in patients with tuberculosis followed by assessing their effectiveness. The aim of the study was to evaluate changes in the intestinal microbiome after a course of probiotics along with anti-tuberculosis chemotherapy in patients with MDR tuberculosis.
Materials and methods. The design a prospective small-cohort study (n = 30). Patients with pulmonary tuberculosis received anti-tuberculosis drugs according to the IV or V regimen, the median of the doses taken was 34.5 (30; 57.5); gastrointestinal syndrome was recorded in all study subjects. Probiotic therapy was applied by using a preparation containing Bifidobacterium bifidum and B. animalis and Lactobacillus casei, L. plantarum, L. delbrueckii subsp.bulgaricus, L. acidophilus. The course of therapy comprised 21 days,1 capsule twice a day. Before and 7 days after probiotics therapy, studies on composition of the intestinal microbiota were carried out, the frequency of virulence factors Enterococcus spp., Staphylococcus spp., Candida spp. was examined; fatty acid composition and activity of enterococcal organic acid production were studied.
Results. After a course of probiotics, a significant increase in lactobacillus titers was recorded from 5.2 (4.0; 6.0) to 6.1 (6.0; 8.0) lg CFU/g (p = 0.05). The frequency of mucosal colonization by Candida fungi and lactose-negative Escherichia decreased by 2-fold (p = 0.001) and 3-fold (p = 0.05), respectively. The frequency of detected virulent strains significantly decreased: hemolysin-producing staphylococci by 9 times (p = 0.009), enterococci with gelatinase activity by 6 times. E. faecalis membrane oleic acid level significantly increased (C9-C18:1) (p = 0.03). In E. faecium, cis-7-palmitoleic acid (C7-C16:1) and oleic (C9-C18:1) fatty acid level increased by 2-fold (p = 0.05), and for linoleic acid (C18:2) by 4 time (p = 0.04) accompanied by elevated acid formation by 1.5 times.
Conclusion. A single course of probiotic therapy in patients with pulmonary tuberculosis leads to qualitative microbiome changes, which are characterized by decreased levels of conditionally pathogenic microorganisms with virulent properties and altered composition of the enterococcal cell membrane accompanied by their increased biochemical activity.
Collapse
|
18
|
Alsufyani T, Al-Otaibi N, Alotaibi NJ, M'sakni NH, Alghamdi EM. GC Analysis, Anticancer, and Antibacterial Activities of Secondary Bioactive Compounds from Endosymbiotic Bacteria of Pomegranate Aphid and Its Predator and Protector. Molecules 2023; 28:molecules28104255. [PMID: 37241995 DOI: 10.3390/molecules28104255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Bacterial secondary metabolites are a valuable source of various molecules that have antibacterial and anticancer activity. In this study, ten endosymbiotic bacteria of aphids, aphid predators and ants were isolated. Bacterial strains were identified according to the 16S rRNA gene. Ethyl acetate fractions of methanol extract (EA-ME) were prepared from each isolated bacterium and tested for their antibacterial activities using the disk diffusion method. The EA-ME of three bacterial species, Planococcus sp., Klebsiella aerogenes, Enterococcus avium, from the pomegranate aphids Aphis punicae, Chrysoperia carnea, and Tapinoma magnum, respectively, exhibited elevated antibacterial activity against one or several of the five pathogenic bacteria tested. The inhibition zones ranged from 10.00 ± 0.13 to 20.00 ± 1.11 mm, with minimum inhibitory concentration (MIC) values ranging from 0.156 mg/mL to 1.25 mg/mL. The most notable antibacterial activity was found in the EA-ME of K. aerogenes against Klebsiella pneumonia and Escherichia coli, with an MIC value of 0.156 mg/mL. The cytotoxic activity of EA-ME was dependent on the cell line tested. The most significant cytotoxicity effect was observed for extracts of K. aerogenes and E. avium, at 12.5 µg/mL, against the epithelial cells of lung carcinoma (A549), with a cell reduction of 79.4% and 67.2%, respectively. For the EA-ME of K. aerogenes and Pantoea agglomerans at 12.5 µg/mL, 69.4% and 67.8% cell reduction were observed against human colon cancer (Hct116), respectively. Gas chromatography-mass spectrometry (GC-MS) analysis of three EA-ME revealed the presence of several bioactive secondary metabolites that have been reported previously to possess antibacterial and anticancer properties. To the best of our knowledge, this is the first study to examine the biological activities of endosymbiotic bacteria in aphids, aphid predators and ants. The promising data presented in this study may pave the way for alternative drugs to overcome the continued emergence of multidrug-resistant bacteria, and find alternative drugs to conventional cancer therapies.
Collapse
Affiliation(s)
- Taghreed Alsufyani
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- High Altitude Research Centre, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Najwa Al-Otaibi
- High Altitude Research Centre, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Noura J Alotaibi
- High Altitude Research Centre, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nour Houda M'sakni
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- High Altitude Research Centre, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Laboratory of the Interfaces and Advanced Materials (LIMA), Science Faculty, Monastir University, P.O. Box 05019, Monastir 5019, Tunisia
| | - Eman M Alghamdi
- Chemistry Department, Faculty of Science, King Abdul Aziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| |
Collapse
|
19
|
Microbiota-Derived Natural Products Targeting Cancer Stem Cells: Inside the Gut Pharma Factory. Int J Mol Sci 2023; 24:ijms24054997. [PMID: 36902427 PMCID: PMC10003410 DOI: 10.3390/ijms24054997] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Cancer stem cells (CSCs) have drawn much attention as important tumour-initiating cells that may also be crucial for recurrence after chemotherapy. Although the activity of CSCs in various forms of cancer is complex and yet to be fully elucidated, opportunities for therapies targeting CSCs exist. CSCs are molecularly distinct from bulk tumour cells, so they can be targeted by exploiting their signature molecular pathways. Inhibiting stemness has the potential to reduce the risk posed by CSCs by limiting or eliminating their capacity for tumorigenesis, proliferation, metastasis, and recurrence. Here, we briefly described the role of CSCs in tumour biology, the mechanisms involved in CSC therapy resistance, and the role of the gut microbiota in cancer development and treatment, to then review and discuss the current advances in the discovery of microbiota-derived natural compounds targeting CSCs. Collectively, our overview suggests that dietary intervention, toward the production of those identified microbial metabolites capable of suppressing CSC properties, is a promising approach to support standard chemotherapy.
Collapse
|
20
|
Screening, Characterization and Optimization of Bioactive Peptides with Antibacterial Activities Against Multi-Drug Resistant Pathogens, Produced by Bacillus safensis Strain MK-12.1. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10469-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Harutyunyan N, Kushugulova A, Hovhannisyan N, Pepoyan A. One Health Probiotics as Biocontrol Agents: One Health Tomato Probiotics. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11101334. [PMID: 35631758 PMCID: PMC9145216 DOI: 10.3390/plants11101334] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/08/2022] [Accepted: 05/08/2022] [Indexed: 05/06/2023]
Abstract
Tomato (Lycopersicon esculentum) is one of the most popular and valuable vegetables in the world. The most common products of its industrial processing in the food industry are juice, tomato paste, various sauces, canned or sun-dried fruits and powdered products. Tomato fruits are susceptible to bacterial diseases, and bacterial contamination can be a risk factor for the safety of processed tomato products. Developments in bioinformatics allow researchers to discuss target probiotic strains from an existing large number of probiotic strains for any link in the soil-plant-animal-human chain. Based on the literature and knowledge on the "One Health" concept, this study relates to the suggestion of a new term for probiotics: "One Health probiotics", beneficial for the unity of people, animals, and the environment. Strains of Lactiplantibacillus plantarum, having an ability to ferment a broad spectrum of plant carbohydrates, probiotic effects in human, and animal health, as well as being found in dairy products, vegetables, sauerkraut, pickles, some cheeses, fermented sausages, fish products, and rhizospheric soil, might be suggested as one of the probable candidates for "One Health" probiotics (also, for "One Health-tomato" probiotics) for the utilization in agriculture, food processing, and healthcare.
Collapse
Affiliation(s)
- Natalya Harutyunyan
- Food Safety and Biotechnology Department, Armenian National Agrarian University, 74 Teryan St., Yerevan 0009, Armenia;
| | - Almagul Kushugulova
- Laboratory of Human Microbiome and Longevity, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave., Nur-Sultan 010000, Kazakhstan;
| | - Narine Hovhannisyan
- Plant Origin Raw Material Processing Technology Department, Armenian National Agrarian University, 74 Teryan St., Yerevan 0009, Armenia;
| | - Astghik Pepoyan
- Food Safety and Biotechnology Department, Armenian National Agrarian University, 74 Teryan St., Yerevan 0009, Armenia;
- Correspondence: ; Tel.: +374-91-432-493
| |
Collapse
|