1
|
Chauviat A, Meyer T, Favre-Bonté S. Versatility of Stenotrophomonas maltophilia: Ecological roles of RND efflux pumps. Heliyon 2023; 9:e14639. [PMID: 37089375 PMCID: PMC10113797 DOI: 10.1016/j.heliyon.2023.e14639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
S. maltophilia is a widely distributed bacterium found in natural, anthropized and clinical environments. The genome of this opportunistic pathogen of environmental origin includes a large number of genes encoding RND efflux pumps independently of the clinical or environmental origin of the strains. These pumps have been historically associated with the uptake of antibiotics and clinically relevant molecules because they confer resistance to many antibiotics. However, considering the environmental origin of S. maltophilia, the ecological role of these pumps needs to be clarified. RND efflux systems are highly conserved within bacteria and encountered both in pathogenic and non-pathogenic species. Moreover, their evolutionary origin, conservation and multiple copies in bacterial genomes suggest a primordial role in cellular functions and environmental adaptation. This review is aimed at elucidating the ecological role of S. maltophilia RND efflux pumps in the environmental context and providing an exhaustive description of the environmental niches of S. maltophilia. By looking at the substrates and functions of the pumps, we propose different involvements and roles according to the adaptation of the bacterium to various niches. We highlight that i°) regulatory mechanisms and inducer molecules help to understand the conditions leading to their expression, and ii°) association and functional redundancy of RND pumps and other efflux systems demonstrate their complex role within S. maltophilia cells. These observations emphasize that RND efflux pumps play a role in the versatility of S. maltophilia.
Collapse
|
2
|
Krawczyk-Bärsch E, Ramtke J, Drobot B, Müller K, Steudtner R, Kluge S, Hübner R, Raff J. Peptidoglycan as major binding motif for Uranium bioassociation on Magnetospirillum magneticum AMB-1 in contaminated waters. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129376. [PMID: 35897184 DOI: 10.1016/j.jhazmat.2022.129376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/30/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
The U(VI) bioassociation on Magnetospirillum magneticum AMB-1 cells was investigated using a multidisciplinary approach combining wet chemistry, microscopy, and spectroscopy methods to provide deeper insight into the interaction of U(VI) with bioligands of Gram-negative bacteria for a better molecular understanding. Our findings suggest that the cell wall plays a prominent role in the bioassociation of U(VI). In time-dependent bioassociation studies, up to 95 % of the initial U(VI) was removed from the suspension and probably bound on the cell wall within the first hours due to the high removal capacity of predominantly alive Magnetospirillum magneticum AMB-1 cells. PARAFAC analysis of TRLFS data highlights that peptidoglycan is the most important ligand involved, showing a stable immobilization of U(VI) over a wide pH range with the formation of three characteristic species. In addition, in-situ ATR FT-IR reveals the predominant strong binding to carboxylic functionalities. At higher pH polynuclear species seem to play an important role. This comprehensive molecular study may initiate in future new remediation strategies on effective immobilization of U(VI). In combination with the magnetic properties of the bacteria, a simple technical water purification process could be realized not only for U(VI), but probably also for other heavy metals.
Collapse
Affiliation(s)
- Evelyn Krawczyk-Bärsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Justus Ramtke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany; University of Applied Sciences Zittau/Görlitz, Faculty of Natural and Environmental Sciences, Theodor-Körner, Allee 8, 02763 Zittau, Germany
| | - Björn Drobot
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Katharina Müller
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Robin Steudtner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Sindy Kluge
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - René Hübner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Johannes Raff
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| |
Collapse
|