1
|
Uniacke-Lowe S, Stanton C, Hill C, Ross RP. The Marine Fish Gut Microbiome as a Source of Novel Bacteriocins. Microorganisms 2024; 12:1346. [PMID: 39065114 PMCID: PMC11278639 DOI: 10.3390/microorganisms12071346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
The marine environment is the largest ecological habitat on Earth, albeit one of the least explored, particularly in terms of its microbial inhabitants. The marine fish gut is host to a diverse microbial community from which diverse bioactive molecules can be sourced. Due to the unique environmental pressures these microbial communities experience, the bioactive molecules they produce often evolve unique adaptations that give them diverse structures and activities, differentiating them from terrestrial homologues. Of particular interest, due to their structural and functional diversity, are the ribosomally-synthesized antimicrobial peptides (bacteriocins). With increasing pressure from emerging antibiotic-resistant disease and industrial demand for novel therapeutics, the marine fish gut microbiome represents a relatively untapped resource of novel bacteriocins that could prove beneficial to human health and aquaculture. This review presents an overview of the marine fish gut microbiome and explores its potential as a source of bacteriocins for human health with considerations for applications and future research in this area.
Collapse
Affiliation(s)
- Shona Uniacke-Lowe
- Teagasc Food Research Centre, Moorepark, P61 C996 Fermoy Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, P61 C996 Fermoy Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
| |
Collapse
|
2
|
Bharti M, Nagar S, Negi RK. Riverine pollution influences the intraspecific variation in the gut microbiome of an invasive fish, Cyprinus carpio (Linn., 1758). 3 Biotech 2023; 13:320. [PMID: 37649590 PMCID: PMC10462599 DOI: 10.1007/s13205-023-03747-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Humans are significantly impacting riverine systems worldwide, prompting us to investigate the effects of water pollution on the gut microbiome of Cyprinus carpio (common carp). Using 16S rRNA gene sequencing, we compared the gut microbiomes of common carp from two sites along river Yamuna with different pollution levels. Water pollution significantly altered the fish gut microbiome structure and microbial composition. Proteobacteria dominated in both sampling sites, while Bacteroidota prevailed in polluted water samples, indicating sewage and fecal contamination. Less polluted samples exhibited Verrucomicrobiae and Planctomycetes, negatively correlated with pollution levels. The polluted site had higher prevalence of potentially pathogenic and heavy metal-resistant bacteria, as well as microbial communities associated with wastewater treatment systems. Functional prediction highlighted the significant role of the gut microbiome in digestion and metabolism, with active enzymes for breaking down various organic substances. Biosynthetic pathways for leucine, valine, and isoleucine were present in both sites, known to be involved fish immunity. The host maintained a stable and diverse bacterial consortium, while microbial diversity became more specialized due to human activities, adapting to anthropogenic stress and selection pressures. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03747-0.
Collapse
Affiliation(s)
- Meghali Bharti
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, North Campus, Delhi, 110007 India
| | - Shekhar Nagar
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, North Campus, Delhi, 110007 India
- Department of Zoology, Deshbandhu College, Kalkaji, New Delhi, 110019 India
| | - Ram Krishan Negi
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, North Campus, Delhi, 110007 India
| |
Collapse
|
3
|
Korry BJ, Belenky P. Trophic level and proteobacteria abundance drive antibiotic resistance levels in fish from coastal New England. Anim Microbiome 2023; 5:16. [PMID: 36879316 PMCID: PMC9990352 DOI: 10.1186/s42523-023-00236-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/19/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND The natural marine environment represents a vast reservoir of antimicrobial resistant bacteria. The wildlife that inhabits this environment plays an important role as the host to these bacteria and in the dissemination of resistance. The relationship between host diet, phylogeny, and trophic level and the microbiome/resistome in marine fish is not fully understood. To further explore this relationship, we utilize shotgun metagenomic sequencing to define the gastrointestinal tract microbiomes of seven different marine vertebrates collected in coastal New England waters. RESULTS We identify inter and intraspecies differences in the gut microbiota of these wild marine fish populations. Furthermore, we find an association between antibiotic resistance genes and host dietary guild, which suggests that higher trophic level organisms have a greater abundance of resistance genes. Additionally, we demonstrate that antibiotic resistance gene burden is positively correlated with Proteobacteria abundance in the microbiome. Lastly, we identify dietary signatures within the gut of these fish and find evidence of possible dietary selection for bacteria with specific carbohydrate utilization potential. CONCLUSIONS This work establishes a link between host lifestyle/dietary guild, and microbiome composition and the abundance of antibiotic resistance genes within the gastrointestinal tract of marine organisms. We expand the current understanding of marine organism-associated microbial communities and their role as reservoirs of antimicrobial resistance genes.
Collapse
Affiliation(s)
- Benjamin J Korry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02906, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02906, USA.
| |
Collapse
|
4
|
Chai L, Wang H, Li X, Wang H. Comparison of the characteristics of gut microbiota response to lead in Bufo gargarizans tadpole at different developmental stages. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20907-20922. [PMID: 36261638 DOI: 10.1007/s11356-022-23671-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
In amphibians, lead (Pb) exposure could alter the composition and structure of gut microbiota, but changes involving microbiota of several successive phases following Pb exposure have been less studied. In the present study, we compared the effects of Pb exposure on morphological parameters and gut microbiota of Bufo gargarizans at Gosner stage (Gs) 33, Gs36, and Gs42. Our results showed that total length (TL), snout-vent length (SVL), and body wet weight (TW) of B. gargarizans at Gs33, as well as TL and SVL at Gs42, were significantly increased after Pb exposure. In addition, high-throughput sequencing analysis indicated that gut microbiota has distinct responses to Pb exposure at different developmental stages. The diversity of gut microbiota was significantly reduced under Pb exposure at Gs33, while it was significantly increased at Gs42. In terms of community composition, Spirochaetota, Armatimonadota, and Patescibacteria appeared in the control groups at Gs42, but not after Pb treatment. Furthermore, functional prediction indicated that the relative abundance of metabolism pathway was significantly decreased at Gs33 and Gs36, and significantly increased at Gs42. Our results fill an important knowledge gap and provide comparative information on the gut microbiota of tadpoles at different developmental stages following Pb exposure.
Collapse
Affiliation(s)
- Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710062, China
| | - Hemei Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Xinyi Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongyuan Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
5
|
Cerbino GN, Traglia GM, Ayala Nuñez T, Parmeciano Di Noto G, Ramírez MS, Centrón D, Iriarte A, Quiroga C. Comparative genome analysis of the genus Shewanella unravels the association of key genetic traits with known and potential pathogenic lineages. Front Microbiol 2023; 14:1124225. [PMID: 36925471 PMCID: PMC10011109 DOI: 10.3389/fmicb.2023.1124225] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Shewanella spp. are Gram-negative rods widely disseminated in aquatic niches that can also be found in human-associated environments. In recent years, reports of infections caused by these bacteria have increased significantly. Mobilome and resistome analysis of a few species showed that they are versatile; however, comprehensive comparative studies in the genus are lacking. Here, we analyzed the genetic traits of 144 genomes from Shewanella spp. isolates focusing on the mobilome, resistome, and virulome to establish their evolutionary relationship and detect unique features based on their genome content and habitat. Shewanella spp. showed a great diversity of mobile genetic elements (MGEs), most of them associated with monophyletic lineages of clinical isolates. Furthermore, 79/144 genomes encoded at least one antimicrobial resistant gene with their highest occurrence in clinical-related lineages. CRISPR-Cas systems, which confer immunity against MGEs, were found in 41 genomes being I-E and I-F the more frequent ones. Virulome analysis showed that all Shewanella spp. encoded different virulence genes (motility, quorum sensing, biofilm, adherence, etc.) that may confer adaptive advantages for survival against hosts. Our data revealed that key accessory genes are frequently found in two major clinical-related groups, which encompass the opportunistic pathogens Shewanella algae and Shewanella xiamenensis together with several other species. This work highlights the evolutionary nature of Shewanella spp. genomes, capable of acquiring different key genetic traits that contribute to their adaptation to different niches and facilitate the emergence of more resistant and virulent isolates that impact directly on human and animal health.
Collapse
Affiliation(s)
- Gabriela N Cerbino
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM), Facultad de Medicina, Buenos Aires, Argentina
| | - German M Traglia
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Teolincacihuatl Ayala Nuñez
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM), Facultad de Medicina, Buenos Aires, Argentina
| | - Gisela Parmeciano Di Noto
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM), Facultad de Medicina, Buenos Aires, Argentina
| | - María Soledad Ramírez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University, Fullerton, Fullerton, CA, United States
| | - Daniela Centrón
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM), Facultad de Medicina, Buenos Aires, Argentina
| | - Andrés Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Cecilia Quiroga
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM), Facultad de Medicina, Buenos Aires, Argentina
| |
Collapse
|
6
|
Bharti M, Nagar S, Khurana H, Negi RK. Metagenomic insights to understand the role of polluted river Yamuna in shaping the gut microbial communities of two invasive fish species. Arch Microbiol 2022; 204:509. [PMID: 35859219 DOI: 10.1007/s00203-022-03127-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/26/2022]
Abstract
The gastrointestinal microbial community plays a crucial role in host health, immunity, protection, development and provides nutrients to the host. The rising human-induced pollution and heavy metal contamination in all aquatic systems globally has led us to explore the gut microbial diversity of two exotic invasive fish Cyprinus carpio (Linnaeus, 1858) and Oreochromis niloticus (Linnaeus,1857) from river Yamuna, India. These fishes are aquatic bioindicators with high demographic resilience. Exploring these associations would pave the way for addressing problems that inhabitant fishes are facing due to the increasing pollution load in the River Yamuna. Based on 16S rRNA gene amplicon sequencing, our results deliver comparative information on the gut microbiome of these fishes and highlight connotations between the microbiome of gut and water samples. The gut of C. carpio and O. niloticus was dominated by phyla Proteobacteria whereas Bacteroidetes dominated the water sample. Microbial communities showed predicted roles such as pathogenicity (Escherichia-Shigella, Aeromonas veronii, Vibrio cholerae, Streptococcus iniae, Flavobacterium columnare, Klebsiella pneumoniae, Mycobacterium sp.), probiotic applications (Bacillus velezensis, Lactobacillus plantarum, Enterococcus faecalis, Bifidobacterium longum, Lactococcus lactis, Leuconostoc falkenbergense) and involvement in sewage and organic matter decomposition (Nitrosomonas sp., Methanosaeta harundinacea, Dechloromonas agitata, Thauera humireducens, Zoogloea ramigera). Heavy metal degrading members (Leucobacter chromiireducens, Pseudomonas fluorescens, P. aeruginosa, Klebsiella pneumoniae, and Micrococcus luteus) were detected in gut microbiome samples thus supporting the notion that fish shapes its gut microbiota with changing ecology. Functional profiling showed that microbial communities are specialized in metabolic functions thus reflecting the dietary profile of these invasive fishes.
Collapse
Affiliation(s)
- Meghali Bharti
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Shekhar Nagar
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
- Deshbandhu College, University of Delhi, Delhi, India
| | - Himani Khurana
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Ram Krishan Negi
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
7
|
Acevedo-Duque Á, Llanos-Herrera GR, García-Salirrosas EE, Simón-Isidoro S, Álvarez-Herranz AP, Álvarez-Becerra R, Sánchez Díaz LC. Scientometric Analysis of Hiking Tourism and Its Relevance for Wellbeing and Knowledge Management. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8534. [PMID: 35886386 PMCID: PMC9319550 DOI: 10.3390/ijerph19148534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023]
Abstract
Hiking is a sports activity that takes place in the natural environment. From the point of view of well-being, it is an aerobic activity that prevents and improves cardiovascular diseases. According to data provided by the United Nations, within the framework of the International Year of Mountains, mountain tourism represents around 15% to 20% of total world tourism revenue. This approach aims to critically analyze the scientific production on trail tourism (HT) with contributions from authors from around the world from 1991 to 2022, in order to respond to the connection between this research, knowledge management and the sustainable development of the industry. Key knowledge contributions are examined using a scientometric approach as a method (spatial, production, impact, and relational) based on registry data stored in the Web of Science (JCR and ESCI). Regarding the results, there has been an increase in scientific production in the last decade, which is manifested in the quality of the publications.
Collapse
Affiliation(s)
- Ángel Acevedo-Duque
- Public Policy Observatory, Universidad Autónoma de Chile, Providencia 7500912, Chile
| | | | | | - Selene Simón-Isidoro
- Programa de Doctorado en Economía y Empresa, Universidad Castilla la Mancha, 16071 Cuenca, Spain;
| | | | - Rina Álvarez-Becerra
- Graduate School, Universidad Nacional Jorge Basadre Grohmann, Tacna 23001, Peru;
| | - Lisette C. Sánchez Díaz
- Dirección Departamento de Auditoría, Contabilidad y Control de Gestión, Universidad Católica del Norte, Antofagasta 1270375, Chile;
| |
Collapse
|