1
|
Wang X, Chen J, Lin H, Min C, Zhang L, Gao Z. Exploring biosynthetic potential of the endophytic Penicillium turbatum BLH34 using whole-genome sequence analysis and molecular networking. Nat Prod Res 2025:1-9. [PMID: 40347091 DOI: 10.1080/14786419.2025.2500738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/13/2025] [Accepted: 04/28/2025] [Indexed: 05/12/2025]
Abstract
An in-depth genomic and metabolomic investigation was conducted on the endophytic fungus Penicillium turbatum BLH34, isolated from Macleaya cordata. Hybrid sequencing (Illumina-Nanopore) generated a high-quality 27.9 Mb genome (GC 48.6%) encoding 9798 proteins, with functional annotation linking 5350 genes to the NCBI non-redundant database and 3404 to KEGG pathways. AntiSMASH analysis uncovered 35 biosynthetic gene clusters (BGCs), 23 of which lacked homology to known pathways, highlighting BLH34's potential for novel metabolite discovery. Molecular networking (GNPS) and LC-MS/MS identified 19 specialised metabolites, including antimicrobial polyketides. Bioassays demonstrated potent inhibition against Staphylococcus aureus (36 mm), Bacillus subtilis (28 mm) and Escherichia coli (24 mm), underscoring its pharmaceutical relevance.
Collapse
Affiliation(s)
- Xuejun Wang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province, China
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui Province, China
| | - Jun Chen
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui Province, China
| | - Han Lin
- Department of Molecular, Cellular and Developmental Biology, School of Art and Sciences, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Changli Min
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui Province, China
| | - Li Zhang
- Analytical and Testing Center, West Anhui University, Anhui Province, China
- Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Anhui Province, China
| | - Zhimou Gao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province, China
| |
Collapse
|
2
|
Gao Y, Xu Y, Dong Z, Guo Y, Luo J, Wang F, Yan L, Zou X. Endophytic Fungal Diversity and Its Interaction Mechanism with Medicinal Plants. Molecules 2025; 30:1028. [PMID: 40076252 PMCID: PMC11902086 DOI: 10.3390/molecules30051028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
This paper reviewed the diversity of endophytic fungi and their interactions with medicinal plants, along with the research methodologies utilized to investigate these interactions. It mainly includes the diversity of endophytic fungi, as well as distribution diversity, species diversity, and the diversity of their metabolites and functions, including antibacterial, anti-inflammatory, anti-tumor, insecticidal, antioxidant capabilities, and so on. The research methodologies employed to investigate the interactions between endophytic fungi and medicinal plants are categorized into metagenomics, transcriptomics, metatranscriptomics, proteomics, and metabolomics. Furthermore, this study anticipates the potential applications of secondary metabolites derived from endophytic fungi in both medicine and agriculture.
Collapse
Affiliation(s)
- Yuan Gao
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China; (Y.X.); (Z.D.); (Y.G.); (J.L.); (F.W.); (L.Y.)
| | - Yan Xu
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China; (Y.X.); (Z.D.); (Y.G.); (J.L.); (F.W.); (L.Y.)
| | - Zhijia Dong
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China; (Y.X.); (Z.D.); (Y.G.); (J.L.); (F.W.); (L.Y.)
| | - Yuyang Guo
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China; (Y.X.); (Z.D.); (Y.G.); (J.L.); (F.W.); (L.Y.)
| | - Jianghan Luo
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China; (Y.X.); (Z.D.); (Y.G.); (J.L.); (F.W.); (L.Y.)
| | - Fuling Wang
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China; (Y.X.); (Z.D.); (Y.G.); (J.L.); (F.W.); (L.Y.)
| | - Lijun Yan
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China; (Y.X.); (Z.D.); (Y.G.); (J.L.); (F.W.); (L.Y.)
| | - Xiang Zou
- Engineering Research Center of Natural Antineoplastic Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| |
Collapse
|
3
|
Mousa W, Alramadan N, Ghemrawi R, Abu Izneid T. Revealing culturable fungal microbiome communities from the Arabian Peninsula desert representing a unique source of biochemicals for drug discovery and biotechnology. F1000Res 2024; 13:1527. [PMID: 40104089 PMCID: PMC11914873 DOI: 10.12688/f1000research.158130.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2024] [Indexed: 03/20/2025] Open
Abstract
Background Microbes living at extremes evolve unique survival strategies to adapt to challenging environmental conditions. Among these strategies is their distinctive metabolic potential and ability to produce specialized metabolites enabling them to compete for limited resources and defend against predators. These metabolites have significant potential in pharmaceutical and industrial applications, particularly in the development of drugs and biochemicals. Objectives This study aimed to investigate the culturable fungal communities associated with four desert plants and their surrounding soils in the Arabian Peninsula desert to identify their bioactive properties. Methods A total of 12 distinct fungal species were isolated from the plants and soils. Each plant hosted a unique set of fungi, demonstrating the diversity of desert-adapted fungal communities. Biological activities of the fungal extracts were evaluated through various assays, including antimicrobial, antifungal, anticancer, and antioxidant properties. Results Panicum turgidum harbors the most diverse fungal community, dominated by genera such as Mucor, Aspergillus, Colletotrichum, Alternaria, and Chaetomium. Aspergillus species comprise 33% of the total isolates, followed by Fusarium at 16%. All extracts exhibit diverse activities, with Aspergillus species demonstrating the highest antioxidant activities and total phenolic and flavonoid content. Fungi from P. turgidum, particularly Mucor sp., Aspergillus sp., and Curvularia sp., display potent activity against Staphylococcus aureus, while Mucor sp., Chaetomium sp., and Curvularia sp. exhibit moderate inhibition against Pseudomonas aeruginosa. Conclusion This study highlights the importance of exploring extremophilic microorganisms, such as those found in desert ecosystems, as they offer a wealth of compounds that could address current challenges in drug discovery and biotechnology.
Collapse
Affiliation(s)
- Walaa Mousa
- College of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- College of Pharmacy, Al Ain University, Al Ain, Abu Dhabi, 64141, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Al Ain, Abu Dhabi, 112612, United Arab Emirates
| | - Najwa Alramadan
- College of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- AAU Health and Biomedical Research Center, Al Ain University, Al Ain, Abu Dhabi, 112612, United Arab Emirates
| | - Rose Ghemrawi
- College of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- AAU Health and Biomedical Research Center, Al Ain University, Al Ain, Abu Dhabi, 112612, United Arab Emirates
| | - Tareq Abu Izneid
- Monash Rural Health, Churchill, School of Rural Health, Faculty of Medicine, nursing and health sciences, Monash University, Victoria, 3844, Australia
| |
Collapse
|
4
|
Du Y, Zhao H, Feng N, Zheng D, Khan A, Zhou H, Deng P, Wang Y, Lu X, Jiang W. Alginate Oligosaccharides Alleviate Salt Stress in Rice Seedlings by Regulating Cell Wall Metabolism to Maintain Cell Wall Structure and Improve Lodging Resistance. PLANTS (BASEL, SWITZERLAND) 2024; 13:1215. [PMID: 38732430 PMCID: PMC11085217 DOI: 10.3390/plants13091215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024]
Abstract
Salt stress is one of the major abiotic stresses that damage the structure and composition of cell walls. Alginate oligosaccharides (AOS) have been advocated to significantly improve plant stress tolerance. The metabolic mechanism by which AOS induces salt tolerance in rice cell walls remains unclear. Here, we report the impact of AOS foliar application on the cell wall composition of rice seedlings using the salt-tolerant rice variety FL478 and the salt-sensitive variety IR29. Data revealed that salt stress decreased biomass, stem basal width, stem breaking strength, and lodging resistance; however, it increased cell wall thickness. In leaves, exogenous AOS up-regulated the expression level of OSCESA8, increased abscisic acid (ABA) and brassinosteroids (BR) content, and increased β-galacturonic activity, polygalacturonase activity, xylanase activity, laccase activity, biomass, and cellulose content. Moreover, AOS down-regulated the expression levels of OSMYB46 and OSIRX10 and decreased cell wall hemicellulose, pectin, and lignin content to maintain cell wall stability under salt stress. In stems, AOS increased phenylalamine ammonia-lyase and tyrosine ammonia-lyase activities, while decreasing cellulase, laccase, and β-glucanase activities. Furthermore, AOS improved the biomass and stem basal width and also enhanced the cellulose, pectin, and lignin content of the stem, As a result, increased resistance to stem breakage strength and alleviated salt stress-induced damage, thus enhancing the lodging resistance. Under salt stress, AOS regulates phytohormones and modifies cellulose, hemicellulose, lignin, and pectin metabolism to maintain cell wall structure and improve stem resistance to lodging. This study aims to alleviate salt stress damage to rice cell walls, enhance resistance to lodging, and improve salt tolerance in rice by exogenous application of AOS.
Collapse
Affiliation(s)
- Youwei Du
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.D.); (H.Z.); (A.K.); (H.Z.); (P.D.); (Y.W.); (X.L.); (W.J.)
- South China Center of National Saline-Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Huimin Zhao
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.D.); (H.Z.); (A.K.); (H.Z.); (P.D.); (Y.W.); (X.L.); (W.J.)
- South China Center of National Saline-Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Naijie Feng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.D.); (H.Z.); (A.K.); (H.Z.); (P.D.); (Y.W.); (X.L.); (W.J.)
- South China Center of National Saline-Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Dianfeng Zheng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.D.); (H.Z.); (A.K.); (H.Z.); (P.D.); (Y.W.); (X.L.); (W.J.)
- South China Center of National Saline-Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Aaqil Khan
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.D.); (H.Z.); (A.K.); (H.Z.); (P.D.); (Y.W.); (X.L.); (W.J.)
| | - Hang Zhou
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.D.); (H.Z.); (A.K.); (H.Z.); (P.D.); (Y.W.); (X.L.); (W.J.)
- South China Center of National Saline-Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Peng Deng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.D.); (H.Z.); (A.K.); (H.Z.); (P.D.); (Y.W.); (X.L.); (W.J.)
- South China Center of National Saline-Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Yaxing Wang
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.D.); (H.Z.); (A.K.); (H.Z.); (P.D.); (Y.W.); (X.L.); (W.J.)
- South China Center of National Saline-Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Xutong Lu
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.D.); (H.Z.); (A.K.); (H.Z.); (P.D.); (Y.W.); (X.L.); (W.J.)
- South China Center of National Saline-Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Wenxin Jiang
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.D.); (H.Z.); (A.K.); (H.Z.); (P.D.); (Y.W.); (X.L.); (W.J.)
- South China Center of National Saline-Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| |
Collapse
|
5
|
Chen M, Ding Z, Zhou M, Shang Y, Li C, Li Q, Bu T, Tang Z, Chen H. The diversity of endophytic fungi in Tartary buckwheat ( Fagopyrum tataricum) and its correlation with flavonoids and phenotypic traits. Front Microbiol 2024; 15:1360988. [PMID: 38559356 PMCID: PMC10979544 DOI: 10.3389/fmicb.2024.1360988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Tartary buckwheat (Fagopyrum tataricum) is a significant medicinal crop, with flavonoids serving as a crucial measure of its quality. Presently, the artificial cultivation of Tartary buckwheat yields low results, and the quality varies across different origins. Therefore, it is imperative to identify an effective method to enhance the yield and quality of buckwheat. Endophytic fungi reside within plants and form a mutually beneficial symbiotic relationship, aiding plants in nutrient absorption, promoting host growth, and improving secondary metabolites akin to the host. In this study, high-throughput sequencing technology was employed to assess the diversity of endophytic fungi in Tartary buckwheat. Subsequently, a correlation analysis was performed between fungi and metabolites, revealing potential increases in flavonoid content due to endophytic fungi such as Bipolaris, Hymenula, and Colletotrichum. Additionally, a correlation analysis between fungi and phenotypic traits unveiled the potential influence of endophytic fungi such as Bipolaris, Buckleyzyma, and Trichosporon on the phenotypic traits of Tartary buckwheat. Notably, the endophytic fungi of the Bipolaris genus exhibited the potential to elevate the content of Tartary buckwheat metabolites and enhance crop growth. Consequently, this study successfully identified the resources of endophytic fungi in Tartary buckwheat, explored potential functional endophytic fungi, and laid a scientific foundation for future implementation of biological fertilizers in improving the quality and growth of Tartary buckwheat.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hui Chen
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| |
Collapse
|
6
|
Signal Molecules Regulate the Synthesis of Secondary Metabolites in the Interaction between Endophytes and Medicinal Plants. Processes (Basel) 2023. [DOI: 10.3390/pr11030849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Signaling molecules act as the links and bridges between endophytes and host plants. The recognition of endophytes and host plants, the regulation of host plant growth and development, and the synthesis of secondary metabolites are not separated by the participation of signaling molecules. In this review, we summarized the types and characteristics of signaling molecules in medicinal plants and the recent processes in intracellular conduction and multi-molecular crosstalk of signaling molecules during interactions between endophytic bacteria and medicinal plants. In addition, we overviewed the molecular mechanism of signals in medical metabolite accumulation and regulation. This work provides a reference for using endophytic bacteria and medicinal plants to synthesize pharmaceutical active ingredients in a bioreactor.
Collapse
|