1
|
Ganeshan S, Parihar N, Chonzom D, Mohanakrishnan D, Das R, Sarma D, Gogoi D, Das MR, Upadhayula SM, Pemmaraju DB. Glycyrrhizin functionalized CuS Nanoprobes for NIR Light-based therapeutic mitigation of acne vulgaris. Drug Deliv Transl Res 2024; 14:2727-2742. [PMID: 38704496 DOI: 10.1007/s13346-024-01594-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2024] [Indexed: 05/06/2024]
Abstract
Acne Vulgaris or Acne is a multifactorial bacterial infection caused by Propionibacterium acne, leading to inflammation and decreased quality of life, especially in adolescence. Currently, antibiotics and retinoids are preferred for treating acne. However, their continuous usage may lead to anti-microbial resistance and other side effects. Therefore, research on developing effective strategies to reduce antimicrobial resistance and improve acne healing is ongoing. The current work reports the synthesis and evaluation of near-infrared light-absorbing copper sulfide (CuS) nanoparticles loaded with a biomolecule, Glycyrrhizin (Ga). The photothermal efficacy studies, and in-vitro and in-vivo experiments indicated that the Ga-CuS NPs generated localized hyperthermia in acne-causing bacteria, leading to their complete growth inhibition. The results indicated that the Ga-Cus NPs possess excellent antibacterial and anti-inflammatory properties in the acne and inflammatory models. This could be from the synergistic effect of CuS NPs mediated mild Photothermal effect and inherent pharmacological properties of Ga. Further detailed studies of the formulations can pave the way for application in cosmetic clinics for the effective and minimally invasive management of Acne-like conditions.
Collapse
Affiliation(s)
- Srivathsan Ganeshan
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, 781101, Assam, India
| | - Nidhi Parihar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, 781101, Assam, India
| | - Donker Chonzom
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, 781101, Assam, India
| | - Dinesh Mohanakrishnan
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, 781101, Assam, India
| | - Rajdeep Das
- Department of Zoology, Gauhati University, Guwahati, 781014, Assam, India
| | - Dandadhar Sarma
- Department of Zoology, Gauhati University, Guwahati, 781014, Assam, India
| | - Devipriya Gogoi
- Materials Sciences, and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | - Manash Ranjan Das
- Materials Sciences, and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Suryanarayana Murty Upadhayula
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, 781101, Assam, India
| | - Deepak Bharadwaj Pemmaraju
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, 781101, Assam, India.
| |
Collapse
|
2
|
Serov DA, Gritsaeva AV, Yanbaev FM, Simakin AV, Gudkov SV. Review of Antimicrobial Properties of Titanium Dioxide Nanoparticles. Int J Mol Sci 2024; 25:10519. [PMID: 39408848 PMCID: PMC11476587 DOI: 10.3390/ijms251910519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
There is a growing interest in the utilization of metal oxide nanoparticles as antimicrobial agents. This review will focus on titanium dioxide nanoparticles (TiO2 NPs), which have been demonstrated to exhibit high antimicrobial activity against bacteria and fungi, chemical stability, low toxicity to eukaryotic cells, and therefore high biocompatibility. Despite the extensive research conducted in this field, there is currently no consensus on how to enhance the antimicrobial efficacy of TiO2 NPs. The aim of this review is to evaluate the influence of various factors, including particle size, shape, composition, and synthesis parameters, as well as microbial type, on the antibacterial activity of TiO2 NPs against bacteria and fungi. Furthermore, the review offers a comprehensive overview of the methodologies employed in the synthesis and characterization of TiO2 NPs. The antimicrobial activity of TiO2 exhibits a weak dependence on the microorganism species. A tendency towards increased antibacterial activity is observed with decreasing TiO2 NP size. The dependence on the shape and composition is more pronounced. The most pronounced antimicrobial potential is exhibited by amorphous NPs and NPs doped with inorganic compounds. This review may be of interest to specialists in biology, medicine, chemistry, and other related fields.
Collapse
Affiliation(s)
- Dmitriy A. Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.A.S.); (A.V.G.); (S.V.G.)
| | - Ann V. Gritsaeva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.A.S.); (A.V.G.); (S.V.G.)
| | - Fatikh M. Yanbaev
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Lobachevskogo St. 2/31, Tatarstan, 420111 Kazan, Russia;
| | - Alexander V. Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.A.S.); (A.V.G.); (S.V.G.)
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.A.S.); (A.V.G.); (S.V.G.)
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod Institute, Gagarin Av. 23, 603105 Nizhny Novgorod, Russia
| |
Collapse
|
3
|
Wu X, Wang H, Xiong J, Yang GX, Hu JF, Zhu Q, Chen Z. Staphylococcus aureus biofilm: Formulation, regulatory, and emerging natural products-derived therapeutics. Biofilm 2024; 7:100175. [PMID: 38298832 PMCID: PMC10827693 DOI: 10.1016/j.bioflm.2023.100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024] Open
Abstract
Staphylococcus aureus can readily form biofilm which enhances the drug-resistance, resulting in life-threatening infections involving different organs. Biofilm formation occurs due to a series of developmental events including bacterial adhesion, aggregation, biofilm maturation, and dispersion, which are controlled by multiple regulatory systems. Rapidly increasing research and development outcomes on natural products targeting S. aureus biofilm formation and/or regulation led to an emergent application of active phytochemicals and combinations. This review aimed at providing an in-depth understanding of biofilm formation and regulation mechanisms for S. aureus, outlining the most important antibiofilm strategies and potential targets of natural products, and summarizing the latest progress in combating S. aureus biofilm with plant-derived natural products. These findings provided further evidence for novel antibiofilm drugs research and clinical therapies.
Collapse
Affiliation(s)
- Xiying Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Huan Wang
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Juan Xiong
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Guo-Xun Yang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jin-Feng Hu
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| |
Collapse
|
4
|
Afrasiabi S, Partoazar A. Targeting bacterial biofilm-related genes with nanoparticle-based strategies. Front Microbiol 2024; 15:1387114. [PMID: 38841057 PMCID: PMC11150612 DOI: 10.3389/fmicb.2024.1387114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024] Open
Abstract
Persistent infection caused by biofilm is an urgent in medicine that should be tackled by new alternative strategies. Low efficiency of classical treatments and antibiotic resistance are the main concerns of the persistent infection due to biofilm formation which increases the risk of morbidity and mortality. The gene expression patterns in biofilm cells differed from those in planktonic cells. One of the promising approaches against biofilms is nanoparticle (NP)-based therapy in which NPs with multiple mechanisms hinder the resistance of bacterial cells in planktonic or biofilm forms. For instance, NPs such as silver (Ag), zinc oxide (ZnO), titanium dioxide (TiO2), copper oxide (Cu), and iron oxide (Fe3O4) through the different strategies interfere with gene expression of bacteria associated with biofilm. The NPs can penetrate into the biofilm structure and affect the expression of efflux pump, quorum-sensing, and adhesion-related genes, which lead to inhibit the biofilm formation or development. Therefore, understanding and targeting of the genes and molecular basis of bacterial biofilm by NPs point to therapeutic targets that make possible control of biofilm infections. In parallel, the possible impact of NPs on the environment and their cytotoxicity should be avoided through controlled exposure and safety assessments. This study focuses on the biofilm-related genes that are potential targets for the inhibition of bacterial biofilms with highly effective NPs, especially metal or metal oxide NPs.
Collapse
Affiliation(s)
- Shima Afrasiabi
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Partoazar
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Rashki S, Dawi EA, Zilaei MR, Safardoust-Hojaghan H, Ghanbari M, Ryadh A, Lafta HA, Khaledi A, Salavati-Niasari M. ZnO/chitosan nanocomposites as a new approach for delivery LL37 and evaluation of the inhibitory effects against biofilm-producing Methicillin-resistant Staphylococcus aureus isolated from clinical samples. Int J Biol Macromol 2023; 253:127583. [PMID: 37866577 DOI: 10.1016/j.ijbiomac.2023.127583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Modification surface of chitosan nanoparticles using ZnO nanoparticles is important interest in drug delivery because of the beneficial properties. In this study, we proposed a chitosan/ZnO nanocomposite for the targeted delivery of antibacterial peptide (LL37). Synthesized LL37-loaded chitosan/ZnO nanocomposite (CS/ZnO/LL37-NCs) was based on the ionotropic gelation method. The antibacterial activity of the synthesized platform versus Methicillin-resistant Staphylococcus aureus (MRSA) was determined by the microdilution method in 10 mM sodium phosphate buffer. The biofilm formation inhibitory was also evaluated using microtiter plate method. In addition, the ability of CS/ZnO/LL37-NCs on the icaA gene expression level was assessed by the Real-Time PCR. The loading and release investigations confirmed the suitability of CS/ZnO-NCs for LL37 encapsulation. Results showed 6 log10 CFU/ml reduction in MRSA treated with the CS/ZnO/LL37-NPs. Moreover, CS/ZnO/LL37-NCs showed 81 % biofilm formation inhibition than LL37 alone. Also, icaA gene expression decreased 1-fold in the face of CS/ZnO/LL37-NCs. In conclusion, the modification surface of chitosan nanoparticles with ZnO nanoparticles is a suitable chemical platform for the delivery of LL37 that could be used as a promising nanocarrier for enhancing the delivery of antibacterial peptide and improving the antibacterial activity of LL37.
Collapse
Affiliation(s)
- Somaye Rashki
- Department of Microbiology, Faculty of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Elmuez A Dawi
- College of Humanities and Sciences, Department of Mathematics, and Science, Ajman University, P.O. Box 346, Ajman, UAE.
| | - Mohammad Reza Zilaei
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Mojgan Ghanbari
- Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box 87317-51167, Kashan, Iran
| | - Abrar Ryadh
- Medical Laboratory Techniques Department, College of Techniques, Al-Mustaqbal University, 51001 Hillah, Iraq
| | - Holya A Lafta
- Medical Laboratory Techniques Department, Al-Nisour University College, Baghdad, Iraq
| | - Azad Khaledi
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box 87317-51167, Kashan, Iran.
| |
Collapse
|