1
|
Li H, Sun Q, Li F, Wang B, Zhu B. Metabolomics of Benzene Exposure and Development of Biomarkers for Exposure Hazard Assessment. Metabolites 2024; 14:377. [PMID: 39057700 PMCID: PMC11278683 DOI: 10.3390/metabo14070377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 07/28/2024] Open
Abstract
Benzene, a common industrial solvent, poses significant health risks including poisoning and hematopoietic diseases. However, its precise toxicity mechanisms remain unclear. To assess the health impact of prolonged benzene exposure through metabolomic analyses of exposed workers and benzene-poisoned mice, aiming to identify biomarkers and minimize occupational hazards. This study compared 18 benzene-exposed workers with 18 non-exposed workers, matching for age, lifestyle, and BMI. The metabolites in the workers' samples were analyzed using ultra-high-performance liquid chromatography and mass spectrometry. A larger study included 118 exposed and 158 non-exposed workers, incorporating surveys and routine blood and urine tests with differential metabolites targeted via an enzyme-linked immunosorbent assay. The animal studies consisted of two 15- and 60-day benzene staining and control experiments on 28 C57BL/6J mice, followed by sample collection and organ analysis. The data analysis employed eXtensible Computational Mass Spectrometry (XCMS), Python, MetaboAnalyst 6.0, and SPSS24.0. The exposed workers exhibited altered metabolites indicating external benzene exposure, lower glucose levels, and changes in white blood cell counts and urinary ketone bodies. The plasma metabolomics revealed disturbances in energy and lipid metabolism. The benzene-exposed mice displayed reduced weight gain, behavioral changes, and organ damage. Oxidative stress and abnormal purine and lipid metabolism were observed in both the long-term benzene-exposed workers and benzene-exposed mice. Metabolic markers for the early detection of benzene exposure hazards were identified, underscoring the need to mitigate occupational risks.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing 210009, China; (H.L.); (F.L.)
| | - Qianyu Sun
- Nanjing Jiangning District Center for Disease Prevention and Control, Nanjing 211100, China;
| | - Fei Li
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing 210009, China; (H.L.); (F.L.)
| | - Boshen Wang
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210000, China
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing 210009, China; (H.L.); (F.L.)
| | - Baoli Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210000, China
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing 210009, China; (H.L.); (F.L.)
- Jiangsu Preventive Medical Association, Nanjing 210000, China
- Center for Global Health, Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Engineering Research Center of Public Health Emergency, Nanjing 210000, China
| |
Collapse
|
2
|
Olaquindox-Induced Liver Damage Involved the Crosstalk of Oxidative Stress and p53 In Vivo and In Vitro. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8835207. [PMID: 33381272 PMCID: PMC7762677 DOI: 10.1155/2020/8835207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/27/2020] [Accepted: 12/03/2020] [Indexed: 01/21/2023]
Abstract
Olaquindox (OLA), a member of the quinoxaline-N,N-dioxide family, has been widely used as a growth-promoting feed additive and treatment for bacterial infections. The toxicity has been a major concern, and the precise molecular mechanism remains poorly understood. The present study was aimed at investigating the roles of oxidative stress and p53 in OLA-caused liver damage. In a mouse model, OLA administration could markedly cause liver injury as well as the induction of oxidative stress and activation of p53. Antioxidant N-acetylcysteine (NAC) inhibited OLA-induced oxidative stress and p53 activation in vivo. Furthermore, knockout of the p53 gene could significantly inhibit OLA-induced liver damage by inhibiting oxidative stress and the mitochondria apoptotic pathway, compared to the p53 wild-type liver tissue. The cell model in vitro further demonstrated that p53 knockout or knockdown in the HCT116 cell and L02 cell significantly inhibited cell apoptosis and increased cell viability, presented by suppressing ROS production, oxidative stress, and the Nrf2/HO-1 pathway. Moreover, loss of p53 decreased OLA-induced mitochondrial dysfunction and caspase activations, with the evidence of inhibited activation of phosphorylation- (p-) p38 and p-JNK and upregulated cell autophagy via activation of the LC3 and Beclin1 pathway in HCT116 and L02 cells. Taken together, our findings provided a support that p53 primarily played a proapoptotic role in OLA-induced liver damage against oxidative stress and mitochondrial dysfunction, which were largely dependent on suppression of the JNK/p38 pathway and upregulation of the autophagy pathway via activation of LC3 and Beclin1.
Collapse
|
3
|
Vigneswara V, Ahmed Z. The Role of Caspase-2 in Regulating Cell Fate. Cells 2020; 9:cells9051259. [PMID: 32438737 PMCID: PMC7290664 DOI: 10.3390/cells9051259] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Caspase-2 is the most evolutionarily conserved member of the mammalian caspase family and has been implicated in both apoptotic and non-apoptotic signaling pathways, including tumor suppression, cell cycle regulation, and DNA repair. A myriad of signaling molecules is associated with the tight regulation of caspase-2 to mediate multiple cellular processes far beyond apoptotic cell death. This review provides a comprehensive overview of the literature pertaining to possible sophisticated molecular mechanisms underlying the multifaceted process of caspase-2 activation and to highlight its interplay between factors that promote or suppress apoptosis in a complicated regulatory network that determines the fate of a cell from its birth and throughout its life.
Collapse
|
4
|
Peng D, Jiaxing W, Chunhui H, Weiyi P, Xiaomin W. Study on the cytogenetic changes induced by benzene and hydroquinone in human lymphocytes. Hum Exp Toxicol 2012; 31:322-35. [DOI: 10.1177/0960327111433900] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Benzene (BN) is a prototypical hematotoxicant, genotoxic carcinogen, and ubiquitous environmental pollutant. Although the molecular mechanisms of BN-induced cytotoxicity and genotoxic damage are poorly understood in humans, previous studies suggested that bioactivated BN metabolites are capable of oxidative stress, cell cycle arrest, apoptosis, and DNA damage. The objective of the current study was to investigate the BN-induced cytogenetic changes and underlying mechanisms based on these hypotheses. Peripheral blood lymphocytes (PBLs) might be the targets for BN-induced cytotoxicity and genotoxicity, and therefore DNA damage responses of PBLs after exposure to different concentrations of BN (0.25, 3.5, 50 μmol/L) or BN metabolite, hydroquinone (HQ; 50, 150, 450 μmol/L) were studied in vitro. Microculture tetrazolium assay, flow cytometry, 2′,7′-dichlorodihydrofluorescein-diacetate assay, comet assay, micronuclei assay, and attenuated total reflectance microspectroscope were chosen for this study. Based on the results, we reached the conclusion that different concentrations of BN or HQ significantly inhibited cell growth, induced the arrest of S phase and G2/M phase, and increased late apoptosis in a concentration-dependent manner. Furthermore, evidence was also provided to support the conclusion that BN and HQ induced DNA strand breaks and chromosomal mutations in PBL, which indicated the genotoxicity of BN and HQ. Current evidence has indicated that multiple mechanisms including dysfunction of cell cycle, programmed cell death, oxidative stress, and DNA lesions are likely to contribute to BN-induced cytogenetic changes.
Collapse
Affiliation(s)
- D Peng
- Department of Public Health, School of Basic Medical, Hubei University of Medicine, Shiyan, Hubei, PR China
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, PR China
| | - W Jiaxing
- School of Chemical Project, Beijing University of Chemical Technology, Beijing, PR China
| | - H Chunhui
- Department of Clinical Laboratories, the Affiliated Taihe Hospital, Hubei University of Medicine, Hubei Shiyan, PR China
| | - P Weiyi
- Department of Health Statistics and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, PR China
| | - W Xiaomin
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, PR China
| |
Collapse
|