1
|
Santos LVDS, Galvão BVD, Souza L, Fernandes ADS, Araujo-Lima CF, Felzenszwalb I. Heterocyclic phytometabolites formononetin and arbutin prevent in vitro oxidative and alkylation-induced mutagenicity. Toxicol Rep 2024; 13:101753. [PMID: 39434863 PMCID: PMC11492619 DOI: 10.1016/j.toxrep.2024.101753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Phenolic phytometabolites are promising bioactive compounds for management of genomic instability related diseases. Formononetin (FMN) and arbutin (ARB) are found in several plant sources. Our goal was to investigate the safety and efficacy of FMN and ARB using in vitro both standardized and alternative toxicogenetic methods. FMN and ARB were evaluated through the OECD'S guidelines No. 471 (Bacterial Reverse Mutation Test -Salmonella/microsome) and No. 487 (In vitro Mammalian Micronucleus Test - CBMN assay), accordingly to the mentioned recommendations. Also, antimutagenicity of FMN and ARB was assessed in S. Typhimurium strains TA98, TA100 and TA1535, following pre-, co- and post- treatment protocols. Liver human lineages HepG2 and F C3H were assayed for cytotoxicity after exposure to FMN and ARB (24, 48 and 72 h) using in vitro WST-1 test. ARB showed no mutagenicity in the Salmonella/microsome test under both metabolic conditions (in presence or absence of 4 % S9 mix), but FMN was cytotoxic to the TA97 and TA100 strains after metabolic activation. Under this same condition, FMN induced an increase in the mutagenic index of strain TA1535 at two of the highest tested concentrations. Even so, ARB and FMN exhibited protection against the induced alkylation of DNA in multiple action modes. In the antimutagenicity assay, FMN reached the maximum of 80 % of oxidative-provoked mutagenicity reduction in TA98 strain in co-treatment with known mutagen, besides 69 % of reduction in TA100 in the same exposure condition. ARB showed up to reduce induced mutagenicity in strains TA100 and TA1535, reaching percentages from 55 % to 100 % of antimutagenicity in all of the tested exposure models against alkylating agent. In the CBMN assay, no increase in micronuclei formation was observed. The results suggest that FMN and ARB prevent DNA from mutation using multi-targeted antimutagenic roles. Finally, our data suggests that FMN and ARB are not genotoxic and presented encouraging antimutagenicity action in vitro, being promising compounds for use in genomic instability-related diseases therapeutics.
Collapse
Affiliation(s)
| | | | - Lays Souza
- Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Carlos Fernando Araujo-Lima
- Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro, Brazil
- Department of Genetics and Molecular Biology, Federal University of Rio de Janeiro State, Rio de Janeiro, Brazil
| | - Israel Felzenszwalb
- Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Regulatory toxicology in the twenty-first century: challenges, perspectives and possible solutions. Arch Toxicol 2015; 89:823-50. [DOI: 10.1007/s00204-015-1510-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 03/17/2015] [Indexed: 10/23/2022]
|
3
|
Chicu SA, Munteanu M, Cîtu I, Soica C, Dehelean C, Trandafirescu C, Funar-Timofei S, Ionescu D, Simu GM. The Hydractinia echinata test-system. III: Structure-toxicity relationship study of some azo-, azo-anilide, and diazonium salt derivatives. Molecules 2014; 19:9798-817. [PMID: 25006787 PMCID: PMC6270994 DOI: 10.3390/molecules19079798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/29/2014] [Accepted: 07/03/2014] [Indexed: 11/29/2022] Open
Abstract
Structure-toxicity relationships for a series of 75 azo and azo-anilide dyes and five diazonium salts were developed using Hydractinia echinata (H. echinata) as model species. In addition, based on these relationships, predictions for 58 other azo-dyes were made. The experimental results showed that the measured effectiveness Mlog(1/MRC50) does not depend on the number of azo groups or the ones corresponding to metobolites, but it is influenced by the number of anilide groups, as well as by the substituents’ positions within molecules. The conformational analysis pointed out the intramolecular hydrogen bonds, especially the simple tautomerization of quinoidic (STOH) or aminoidic (STNH2) type. The effectiveness is strongly influenced by the “push-pull” electronic effect, specific to two hydroxy or amino groups separated by an azo moiety (double alternate tautomery, (DAT), to the –COOH or –SO3H groups which are located in ortho or para position with respect to the azo group. The levels of the lipophylic/hydrophilic, electronic and steric equilibriums, pointed out by the Mlog(1/MRC50) values, enabled the calculation of their average values Clog(1/MRC50) (“Köln model”), characteristic to one derivative class (class isotoxicity). The azo group reduction and the hydrolysis of the amido/peptidic group are two concurrent enzymatic reactions, which occur with different reaction rates and mechanisms. The products of the partial biodegradation are aromatic amines. No additive or synergic effects are noticed among them.
Collapse
Affiliation(s)
- Sergiu Adrian Chicu
- Institute of Chemistry Timisoara of the Romanian Academy, B-dul Mihai Viteazul 24, RO-300223 Timişoara, Romania.
| | - Melania Munteanu
- Department of Clinical Laboratory and Sanitary Chemistry, "Vasile Goldis" University, 1 Feleacului Str., Arad 310396, Romania.
| | - Ioana Cîtu
- Faculty of Medicine, "V. Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania.
| | - Codruta Soica
- Faculty of Pharmacy, "V. Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania.
| | - Cristina Dehelean
- Faculty of Pharmacy, "V. Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania.
| | - Cristina Trandafirescu
- Faculty of Pharmacy, "V. Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania.
| | - Simona Funar-Timofei
- Institute of Chemistry Timisoara of the Romanian Academy, B-dul Mihai Viteazul 24, RO-300223 Timişoara, Romania.
| | - Daniela Ionescu
- Faculty of Pharmacy, "V. Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania.
| | - Georgeta Maria Simu
- Faculty of Pharmacy, "V. Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania.
| |
Collapse
|
4
|
Wang Y, Borlak J, Tong W. Toxicogenomics – A Drug Development Perspective. GENOMIC BIOMARKERS FOR PHARMACEUTICAL DEVELOPMENT 2014:127-155. [DOI: 10.1016/b978-0-12-397336-8.00006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Punt A, Schiffelers MJWA, Jean Horbach G, van de Sandt JJM, Groothuis GMM, Rietjens IMCM, Blaauboer BJ. Evaluation of research activities and research needs to increase the impact and applicability of alternative testing strategies in risk assessment practice. Regul Toxicol Pharmacol 2011; 61:105-14. [PMID: 21782875 DOI: 10.1016/j.yrtph.2011.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Revised: 06/07/2011] [Accepted: 06/29/2011] [Indexed: 11/20/2022]
Abstract
The present paper aims at identifying strategies to increase the impact and applicability of alternative testing strategies in risk assessment. To this end, a quantitative and qualitative literature evaluation was performed on (a) current research efforts in the development of in vitro methods aiming for alternatives to animal testing, (b) the possibilities and limitations of in vitro methods for regulatory purposes and (c) the potential of physiologically-based kinetic (PBK) modeling to improve the impact and applicability of in vitro methods in risk assessment practice. Overall, the evaluation showed that the focus of state-of-the-art research activities does not seem to be optimally directed at developing in vitro alternatives for those endpoints that are most animal-demanding, such as reproductive and developmental toxicity, and carcinogenicity. A key limitation in the application of in vitro alternatives to such systemic endpoints is that in vitro methods do not provide so-called points of departure, necessary for regulators to set safe exposure limits. PBK-modeling could contribute to overcoming this limitation by providing a method that allows extrapolation of in vitro concentration-response curves to in vivo dose-response curves. However, more proofs of principle are required.
Collapse
Affiliation(s)
- Ans Punt
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80176, 3508 TD Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
6
|
Ruiz-Aracama A, Peijnenburg A, Kleinjans J, Jennen D, van Delft J, Hellfrisch C, Lommen A. An untargeted multi-technique metabolomics approach to studying intracellular metabolites of HepG2 cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. BMC Genomics 2011; 12:251. [PMID: 21599895 PMCID: PMC3141663 DOI: 10.1186/1471-2164-12-251] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 05/20/2011] [Indexed: 01/14/2023] Open
Abstract
Background In vitro cell systems together with omics methods represent promising alternatives to conventional animal models for toxicity testing. Transcriptomic and proteomic approaches have been widely applied in vitro but relatively few studies have used metabolomics. Therefore, the goal of the present study was to develop an untargeted methodology for performing reproducible metabolomics on in vitro systems. The human liver cell line HepG2, and the well-known hepatotoxic and non-genotoxic carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), were used as the in vitro model system and model toxicant, respectively. Results The study focused on the analysis of intracellular metabolites using NMR, LC-MS and GC-MS, with emphasis on the reproducibility and repeatability of the data. State of the art pre-processing and alignment tools and multivariate statistics were used to detect significantly altered levels of metabolites after exposing HepG2 cells to TCDD. Several metabolites identified using databases, literature and LC-nanomate-Orbitrap analysis were affected by the treatment. The observed changes in metabolite levels are discussed in relation to the reported effects of TCDD. Conclusions Untargeted profiling of the polar and apolar metabolites of in vitro cultured HepG2 cells is a valid approach to studying the effects of TCDD on the cell metabolome. The approach described in this research demonstrates that highly reproducible experiments and correct normalization of the datasets are essential for obtaining reliable results. The effects of TCDD on HepG2 cells reported herein are in agreement with previous studies and serve to validate the procedures used in the present work.
Collapse
Affiliation(s)
- Ainhoa Ruiz-Aracama
- RIKILT-Institute of Food Safety, Wageningen University and Research Centre, Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
7
|
Bolleyn J, Fraczek J, Vinken M, Lizarraga D, Gaj S, van Delft JHM, Rogiers V, Vanhaecke T. Effect of Trichostatin A on miRNA expression in cultures of primary rat hepatocytes. Toxicol In Vitro 2011; 25:1173-82. [PMID: 21513791 DOI: 10.1016/j.tiv.2011.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 03/01/2011] [Accepted: 04/08/2011] [Indexed: 10/18/2022]
Abstract
In the present study, the effect of Trichostatin A (TSA), a histone deacetylase inhibitor, was investigated on the microRNA (miR, miRNA) expression profile in cultured primary rat hepatocytes by means of microarray analysis. Simultaneously, albumin secretory capacity and morphological features of the hepatocytes were evaluated throughout the culture time. In total, 25 out of 348 miRNAs were found to be differentially expressed between freshly isolated hepatocytes and 7-day cultured cells. Nineteen of these miRNAs were connected with 'general metabolism'. miR-21 and miR-126 were shown to be the most up and down regulated miRs upon cultivation and could be linked to the proliferative response triggered in the hepatocytes upon their isolation from the liver. miR-379 and miR-143, on the other hand, were found to be the most up and down regulated miRs upon TSA treatment. Together with the higher expression of miR-122 observed in TSA-treated versus non-treated cultures, we hypothesize that the changes observed for miR-122, miR-143 and miR-379 could be related to the inhibitory effects of TSA on hepatocellular proliferation.
Collapse
Affiliation(s)
- Jennifer Bolleyn
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Combes RD. Is computational toxicology withering on the vine? Arch Toxicol 2010; 84:333-6. [DOI: 10.1007/s00204-010-0528-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 02/16/2010] [Indexed: 10/19/2022]
|