1
|
Michán C, Chicano-Gálvez E, Fuentes-Almagro CA, Alhama J. Redox and global interconnected proteome changes in mice exposed to complex environmental hazards surrounding Doñana National Park. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:427-439. [PMID: 31158671 DOI: 10.1016/j.envpol.2019.05.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/30/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Natural environments are receiving an increasing number of contaminants. Therefore, the evaluation and identification of early responses to pollution in these complex habitats is an urgent and challenging task. Doñana National Park (DNP, SW Spain) has been widely used as a model area for environmental studies because, despite its strictly protected core, it is surrounded by numerous threat sources from agricultural, mining and industrial activities. Since many pollutants often induce oxidative stress, redox proteomics was used to detect redox-based variations within the proteome of Mus spretus mice captured in DNP and the surrounding areas. Functional analysis showed that most differentially oxidized proteins are involved in the maintenance of homeostasis, by eliciting mechanisms to respond to toxic substances and oxidative stress, such as antioxidant and biotransformation processes, immune and inflammatory responses, and blood coagulation. Furthermore, changes in the overall protein abundance were also analysed by label-free quantitative proteomics. The upregulation of phase I and II biotransformation enzymes in mice from Lucio del Palacio may be an alert for organic pollution in the area located at the heart of DNP. Metabolic processes involved in protein turnover (proteolysis, amino acid catabolism, new protein biosynthesis and folding) were activated in response to oxidative damage to these biomolecules. Consequently, aerobic respiratory metabolism increased to address the greater ATP demands. Alterations of cholesterol metabolism that could cause hepatic steatosis were also detected. The proteomic detection of globally altered metabolic and physiological processes offers a complete view of the main biological changes caused by environmental pollution in complex habitats.
Collapse
Affiliation(s)
- Carmen Michán
- Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | | | | | - José Alhama
- Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain.
| |
Collapse
|
2
|
Reardon AJF, Karathra J, Ribbenstedt A, Benskin JP, MacDonald AM, Kinniburgh DW, Hamilton TJ, Fouad K, Martin JW. Neurodevelopmental and Metabolomic Responses from Prenatal Coexposure to Perfluorooctanesulfonate (PFOS) and Methylmercury (MeHg) in Sprague-Dawley Rats. Chem Res Toxicol 2019; 32:1656-1669. [PMID: 31340646 DOI: 10.1021/acs.chemrestox.9b00192] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Methylmercury (MeHg) and perfluorooctanesulfonate (PFOS) are major contaminants of human blood that are both common in dietary fish, thereby raising questions about their combined impact on human development. Here, pregnant Sprague-Dawley rats ingested a daily dose, from gestational day 1 through to weaning, of either 1 mg/kg bw PFOS (PFOS-only), 1 mg/kg MeHg (MeHg-only), a mixture of 0.1 mg/kg PFOS and 1 mg/kg MeHg (Low-Mix), or of 1 mg/kg of PFOS and 1 mg/kg MeHg (High-Mix). Newborns were monitored for physical milestones and reflexive developmental responses, and in juveniles the spontaneous activity, anxiety, memory, and cognition were assessed. Targeted metabolomics of 199 analytes was applied to sectioned brain regions of juvenile offspring. Newborns in the High-Mix group had decreased weight gain as well as delayed reflexes and innate behavioral responses compared to controls and individual chemical groups indicating a toxicological interaction on early development. In juveniles, cumulative mixture effects increased in a dose-dependent manner in tests of anxiety-like behavior. However, other developmental test results suggested antagonism, as PFOS-only and MeHg-only juveniles had increased hyperactivity and thigmotaxic behavior, respectively, but fewer effects in Low-Mix and High-Mix groups. Consistent with these behavioral observations, a pattern of antagonism was also observed in neurochemicals measured in rat cortex, as PFOS-only and MeHg-only juveniles had altered concentrations of metabolites (e.g., lipids, amino acids, and biogenic amines), while no changes were evident in the combined exposures. The cortical metabolites altered in PFOS-only and MeHg-only exposed groups are involved in inhibitory and excitatory neurotransmission. These proof-of-principle findings at relatively high doses indicate the potential for toxicological interaction between PFOS and MeHg, with developmental-stage specific effects. Future mixture studies at lower doses are warranted, and prospective human birth cohorts should consider possible confounding effects from PFOS and mercury exposure on neurodevelopment.
Collapse
Affiliation(s)
- Anthony J F Reardon
- Department of Laboratory Medicine and Pathology , University of Alberta , Edmonton , Alberta T6G 2G3 , Canada
| | - Jacqueline Karathra
- Department of Laboratory Medicine and Pathology , University of Alberta , Edmonton , Alberta T6G 2G3 , Canada
| | - Anton Ribbenstedt
- Department of Environmental Science and Analytical Chemistry (ACES) , Stockholm University , Stockholm SE-11418 , Sweden
| | - Jonathan P Benskin
- Department of Environmental Science and Analytical Chemistry (ACES) , Stockholm University , Stockholm SE-11418 , Sweden
| | - Amy M MacDonald
- Alberta Centre for Toxicology , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
| | - David W Kinniburgh
- Alberta Centre for Toxicology , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
| | - Trevor J Hamilton
- Department of Psychology , MacEwan University , Edmonton , Alberta T5J 4S2 , Canada
| | - Karim Fouad
- Department of Physical Therapy , University of Alberta , Edmonton , Alberta T6G 2G4 , Canada
| | - Jonathan W Martin
- Department of Laboratory Medicine and Pathology , University of Alberta , Edmonton , Alberta T6G 2G3 , Canada.,Department of Environmental Science and Analytical Chemistry (ACES) , Stockholm University , Stockholm SE-11418 , Sweden
| |
Collapse
|
3
|
Grinberg M. Highlight report: Erroneous sample annotation in a high fraction of publicly available genome-wide expression datasets. EXCLI JOURNAL 2016; 14:1256-8. [PMID: 26862323 PMCID: PMC4743481 DOI: 10.17179/excli2015-760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Marianna Grinberg
- Department of Statistics, TU Dortmund University, 44139 Dortmund, Germany
| |
Collapse
|
4
|
Lin Y, Min L, Huang Q, Chen Y, Fang C, Sun X, Dong S. The combined effects of DEHP and PCBs on phospholipase in the livers of mice. ENVIRONMENTAL TOXICOLOGY 2015; 30:197-204. [PMID: 23804495 DOI: 10.1002/tox.21885] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/24/2013] [Accepted: 05/27/2013] [Indexed: 06/02/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) and polychlorinated biphenyls (PCBs) are two widely distributed pollutants that are of great concern due to their adverse health effects. However, few studies have investigated the combined effects of DEHP and PCBs. In this study, adult mice were continuously exposed to mixtures of DEHP (15 mg/kg bodyweight/day) and Aroclor 1254 (7.5 mg/kg bodyweight/day) for 12 days to investigate the combined effects of these compounds. The results showed that the ratio of the liver weight to the body weight was higher in the treated group than that in the control group. The effects of combined exposure on three important receptors, the proliferator-activated receptor (PPAR), estrogen receptor (ER), and aryl hydrocarbon receptor (AHR), were investigated. The mRNA level of PPARγ was significantly up-regulated after exposure. The expression level of ERα was decreased in the male treated group. In contrast, the expression levels of AHR and related genes (cyp1a1 and cyp1b1) were not markedly affected. The expression level of phospholipase A (PLA) was significantly down-regulated at both the mRNA and protein levels in male mice after combined treatment. In all, our study demonstrated the combined effects of DEHP and PCBs on the expression levels of key receptors in mice. The combined exposure led to a decrease in phospholipase in male mice.
Collapse
Affiliation(s)
- Yi Lin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
5
|
Iwai-Shimada M, Nakamura T, Sugawara N, Kurokawa N, Nakai K, Satoh H. Increase in accumulation of polychlorinated biphenyls in offspring mouse brain via maternal coexposure to methylmercury and polychlorinated biphenyls. J Toxicol Sci 2014; 38:689-96. [PMID: 24025785 DOI: 10.2131/jts.38.689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Methylmercury (MeHg) and polychlorinated biphenyls (PCBs) are environmentally persistent neurodevelopmental toxicants. In Japan, the most common source of human exposure is the consumption of contaminated fish and seafood. We investigated the accumulation of MeHg and PCBs in the brains of dams and offspring mice maternally exposed to MeHg and/or PCBs. Pregnant mice (C57BL/6Cr) were assigned to one of four exposure groups: control, MeHg alone (MeHg in diet at 5 mg/kg as Hg), PCB alone (Aroclor1254 by gavage at the dose of 18 mg/kg body weight/3 days) and MeHg+PCB. Levels of MeHg and PCBs were measured in the whole brains of dams and offspring mice on postnatal day 21 (PND21) and at 9 weeks of age. Total mercury, MeHg and PCB congener concentrations were determined by CVAAS, GC-ECD and HRGC/HRMS, respectively. For the mercury concentrations, there were no significant differences between MeHg alone and MeHg+PCB except for pups at 9 weeks. The maternal PCB levels were not significantly different between MeHg+PCB and PCB alone. In pup brain on PND21, MeHg+PCB resulted in a significantly higher PCB level than PCB alone. Although the levels of lightly chlorinated (= 4CBs) homologues were lower for MeHg+PCB than for PCB alone, those of highly chlorinated (>= 5CBs) homologues were significantly higher on PND21 for MeHg+PCB. The PCB composition in dams and pups shifted to higher chlorinated homologues compared with the composition of administered Aroclor1254. For these reasons, further detailed studies are necessary to clarify the interactional effects of PCB metabolism after coexposure to MeHg and PCBs.
Collapse
Affiliation(s)
- Miyuki Iwai-Shimada
- Environmental Health Sciences, Tohoku University Graduate School of Medicine
| | | | | | | | | | | |
Collapse
|
6
|
Chemokine (C-C motif) ligand 22 is down-regulated in a human B lymphoblastoid cell line by PCB153 and in residents from PCBs-contaminated areas. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 752:21-7. [DOI: 10.1016/j.mrgentox.2012.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/19/2012] [Accepted: 12/26/2012] [Indexed: 11/21/2022]
|
7
|
|
8
|
Bolt HM, Marchan R, Hengstler JG. Nanotoxicology and oxidative stress control: cutting-edge topics in toxicology. Arch Toxicol 2012; 86:1629-35. [DOI: 10.1007/s00204-012-0953-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Marchan R, Bolt HM. Progress in gene expression profiling by the introduction of metagenes. Arch Toxicol 2012; 86:1165-6. [DOI: 10.1007/s00204-012-0879-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Jayashankar S, Glover CN, Folven KI, Brattelid T, Hogstrand C, Lundebye AK. Cerebral gene expression in response to single or combined gestational exposure to methylmercury and selenium through the maternal diet. Cell Biol Toxicol 2011; 27:181-97. [PMID: 21240674 PMCID: PMC3085103 DOI: 10.1007/s10565-010-9180-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 12/30/2010] [Indexed: 11/24/2022]
Abstract
Controversy remains regarding the safety of consuming certain types of seafood, particularly during pregnancy. While seafood is rich in vital nutrients, it may also be an important source of environmental contaminants such as methylmercury (MeHg). Selenium (Se) is one essential element present in seafood, hypothesised to ameliorate MeHg toxicity. The aim of the present study was to ascertain the impact of Se on MeHg-induced cerebral gene expression in a mammalian model. Microarray analysis was performed on brain tissue from 15-day-old mice that had been exposed to MeHg throughout development via the maternal diet. The results from the microarray analysis were validated using qPCR. The exposure groups included: MeHg alone (2.6 mg kg(-1)), Se alone (1.3 mg kg(-1)), and MeHg + Se. MeHg was presented in a cysteinate form, and Se as Se-methionine, one of the elemental species occurring naturally in seafood. Eight genes responded to Se exposure alone, five were specific to MeHg, and 63 were regulated under the concurrent exposure of MeHg and Se. Significantly enriched functional classes relating to the immune system and cell adhesion were identified, highlighting potential ameliorating mechanisms of Se on MeHg toxicity. Key developmental genes, such as Wnt3 and Sparcl1, were also identified as putative ameliorative targets. This study, utilising environmentally realistic forms of toxicants, delivered through the natural route of exposure, in association with the power of transcriptomics, highlights significant novel information regarding putative pathways of selenium and MeHg interaction in the mammalian brain.
Collapse
Affiliation(s)
- Shalini Jayashankar
- National Institute of Nutrition and Seafood Research (NIFES), Post box 2029 Nordnes, 5817 Bergen, Norway
| | - Chris N. Glover
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140 New Zealand
| | - Kristin I. Folven
- National Institute of Nutrition and Seafood Research (NIFES), Post box 2029 Nordnes, 5817 Bergen, Norway
| | - Trond Brattelid
- National Institute of Nutrition and Seafood Research (NIFES), Post box 2029 Nordnes, 5817 Bergen, Norway
| | - Christer Hogstrand
- National Institute of Nutrition and Seafood Research (NIFES), Post box 2029 Nordnes, 5817 Bergen, Norway
- Nutritional Sciences Division, School of Biomedical and Health Sciences, King’s College London, London, SE1 9NH UK
| | - Anne-Katrine Lundebye
- National Institute of Nutrition and Seafood Research (NIFES), Post box 2029 Nordnes, 5817 Bergen, Norway
| |
Collapse
|
11
|
Abstract
Exposure to endocrine disrupting chemicals (EDCs) is associated with dysfunctions of metabolism, energy balance, thyroid function and reproduction, and an increased risk of endocrine cancers. These multifactorial disorders can be 'programmed' through molecular epigenetic changes induced by exposure to EDCs early in life, the expression of which may not manifest until adulthood. In some cases, EDCs have detrimental effects on subsequent generations, which indicates that traits for disease predisposition may be passed to future generations by nongenomic inheritance. This Review discusses current understanding of the epigenetic mechanisms that underlie sexual differentiation of reproductive neuroendocrine systems in mammals and summarizes the literature on transgenerational epigenetic effects of representative EDCs: vinclozolin, diethylstilbesterol, bisphenol A and polychlorinated biphenyls. The article differentiates between context-dependent epigenetic transgenerational changes--namely, those that require environmental exposure, either via the EDC itself or through behavioral or physiological differences in parents--and germline-dependent epigenetic mechanisms. These processes, albeit discrete, are not mutually exclusive and can involve similar molecular mechanisms including DNA methylation and histone modifications and may predispose exposed individuals to transgenerational disruption of reproductive processes. New insights stress the crucial need to develop a clear understanding of how EDCs may program the epigenome of exposed individuals and their descendants.
Collapse
Affiliation(s)
- Deena M Walker
- Institute for Neuroscience, The University of Texas at Austin, 1 University Station, Box A1915, Austin, TX 78712, USA
| | | |
Collapse
|
12
|
|
13
|
Ceccatelli S, Daré E, Moors M. Methylmercury-induced neurotoxicity and apoptosis. Chem Biol Interact 2010; 188:301-8. [PMID: 20399200 DOI: 10.1016/j.cbi.2010.04.007] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/06/2010] [Accepted: 04/08/2010] [Indexed: 12/24/2022]
Abstract
Methylmercury is a widely distributed environmental toxicant with detrimental effects on the developing and adult nervous system. Due to its accumulation in the food chain, chronic exposure to methylmercury via consumption of fish and sea mammals is still a major concern for human health, especially developmental exposure that may lead to neurological alterations, including cognitive and motor dysfunctions. Mercury-induced neurotoxicity and the identification of the underlying mechanisms has been a main focus of research in the neurotoxicology field. Three major mechanisms have been identified as critical in methylmercury-induced cell damage including (i) disruption of calcium homeostasis, (ii) induction of oxidative stress via overproduction of reactive oxygen species or reduction of antioxidative defenses and (iii) interactions with sulfhydryl groups. In vivo and in vitro studies have provided solid evidence for the occurrence of neural cell death, as well as cytoarchitectural alterations in the nervous system after exposure to methylmercury. Signaling cascades leading to cell death induced by methylmercury involve the release of mitochondrial factors, such as cytochrome c and AIF with subsequent caspase-dependent or -independent apoptosis, respectively; induction of calcium-dependent proteases calpains; interaction with lysosomes leading to release of cathepsins. Interestingly, several pathways can be activated in parallel, depending on the cell type. In this paper, we provide an overview of recent findings on methylmercury-induced neurotoxicity and cell death pathways that have been described in neural and endocrine cell systems.
Collapse
Affiliation(s)
- Sandra Ceccatelli
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|