1
|
Zhou L, Zou M, Xu Y, Lin P, Lei C, Xia X. Nano Drug Delivery System for Tumor Immunotherapy: Next-Generation Therapeutics. Front Oncol 2022; 12:864301. [PMID: 35664731 PMCID: PMC9160744 DOI: 10.3389/fonc.2022.864301] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022] Open
Abstract
Tumor immunotherapy is an artificial stimulation of the immune system to enhance anti-cancer response. It has become a powerful clinical strategy for treating cancer. The number of immunotherapy drug approvals has been increasing in recent years, and many treatments are in clinical and preclinical stages. Despite this progress, the special tumor heterogeneity and immunosuppressive microenvironment of solid tumors made immunotherapy in the majority of cancer cases difficult. Therefore, understanding how to improve the intratumoral enrichment degree and the response rate of various immunotherapy drugs is key to improve efficacy and control adverse reactions. With the development of materials science and nanotechnology, advanced biomaterials such as nanoparticle and drug delivery systems like T-cell delivery therapy can improve effectiveness of immunotherapy while reducing the toxic side effects on non-target cells, which offers innovative ideas for improving immunity therapeutic effectiveness. In this review, we discuss the mechanism of tumor cell immune escape and focus on current immunotherapy (such as cytokine immunotherapy, therapeutic monoclonal antibody immunotherapy, PD-1/PD-L1 therapy, CAR-T therapy, tumor vaccine, oncolytic virus, and other new types of immunity) and its challenges as well as the latest nanotechnology (such as bionic nanoparticles, self-assembled nanoparticles, deformable nanoparticles, photothermal effect nanoparticles, stimuli-responsive nanoparticles, and other types) applications in cancer immunotherapy.
Collapse
Affiliation(s)
- Lili Zhou
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Manshu Zou
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yilin Xu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Peng Lin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Chang Lei
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xinhua Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
Ethical Consumers’ Awareness of Vegan Materials: Focused on Fake Fur and Fake Leather. SUSTAINABILITY 2021. [DOI: 10.3390/su13010436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With an increase in ethical awareness, people have begun to criticize the unethical issues associated with the use of animal materials. This study focused on the transition of global consumers’ awareness toward vegan materials and the relationship between the interest in ethical subjects such as animals, the environment, and vegan materials. For this purpose, consumers’ posts about fur/fake fur and leather/fake leather uploaded on Google and Twitter from 2008 to 2019 were utilized, and the Term Frequency-Inverse Document Frequency (Tf-idf) value was extracted using Python 3.7. Furthermore, the worldwide Google keyword search volume of each word was analyzed using Smart PLS 3.0 to investigate global consumers’ awareness. First, with time, consumers began relating animal materials such as fur and leather to topics such as animal rights, animal abuse, and animal protection. Second, as interest in “animal welfare” increased, interest in “fake fur” also rose, and as interest in “cruelty free” increased, interest in “fake fur”, “vegan fur”, and “vegan leather” also increased. Third, as consumers’ interest in the “environment” increased, interest in vegan materials such as “fake fur” and “fake leather” decreased. However, as interest in “eco” increased, interest in “vegan leather” also augmented.
Collapse
|
3
|
de Ávila RI, Veloso DFMC, Teixeira GC, Rodrigues TL, Lindberg T, Lindstedt M, Fonseca SG, Lima EM, Valadares MC. Evaluation ofin vitrotesting strategies for hazard assessment of the skin sensitization potential of “real‐life” mixtures: The case of henna‐based hair‐colouring products containingp‐phenylenediamine. Contact Dermatitis 2019; 81:194-209. [DOI: 10.1111/cod.13294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/11/2019] [Accepted: 04/17/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Renato Ivan de Ávila
- Laboratory of Education and Research in In Vitro Toxicology—Tox In, Faculty of PharmacyUniversidade Federal de Goiás Goiânia Brazil
| | - Danillo F. M. C. Veloso
- Laboratory of Pharmaceutical Technology—FarmaTec, Faculty of PharmacyUniversidade Federal de Goiás Goiânia Brazil
| | - Gabriel C. Teixeira
- Laboratory of Education and Research in In Vitro Toxicology—Tox In, Faculty of PharmacyUniversidade Federal de Goiás Goiânia Brazil
| | - Thaisângela L. Rodrigues
- Laboratory of Education and Research in In Vitro Toxicology—Tox In, Faculty of PharmacyUniversidade Federal de Goiás Goiânia Brazil
| | - Tim Lindberg
- Department of Immunotechnology, Medicon VillageLund University Lund Sweden
| | - Malin Lindstedt
- Department of Immunotechnology, Medicon VillageLund University Lund Sweden
| | - Simone G. Fonseca
- Institute of Tropical Pathology and Public HealthUniversidade Federal de Goiás Goiânia Brazil
| | - Eliana M. Lima
- Laboratory of Pharmaceutical Technology—FarmaTec, Faculty of PharmacyUniversidade Federal de Goiás Goiânia Brazil
| | - Marize C. Valadares
- Laboratory of Education and Research in In Vitro Toxicology—Tox In, Faculty of PharmacyUniversidade Federal de Goiás Goiânia Brazil
| |
Collapse
|
4
|
Leme DM, Sehr A, Grummt T, Gonçalves JP, Jacomasso T, Winnischofer SMB, Potrich FB, Oliveira CCD, Trindade EDS, de Oliveira DP. In vitro characterization of cutaneous immunotoxicity of immortalized human keratinocytes (HaCaT) exposed to reactive and disperse textile dyes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:589-603. [PMID: 29714641 DOI: 10.1080/15287394.2018.1464981] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
Several synthetic dyes are used by textile industry for supplying the market of colored clothes. However, these chemicals have been associated with a variety of adverse human health effects, including textile dermatitis. Thus, there is a growing concern to identify textile dyes potentially as skin immunotoxicants. The aim of this in vitro study was to characterize the immunotoxic potential of reactive (Reactive Green 19 [RG19], Reactive Blue 2 [RB2], Reactive Black 5 [RB5]) and disperse (Disperse Red 1 [DR1]) textile dyes using a dermal cell line. For this purpose, a cell-based approach was conducted with immortalized human keratinocytes (KC) (HaCaT) using selected biomarkers of cutaneous inflammation including modulation of matrix metalloproteinases (MMP), oxidative stress such as reactive oxygen species (ROS) generation, and inflammatory cytokine profile. DR1 was the only dye able to trigger an immune response such as release of IL-12 cytokine, a potent co-stimulator of T helper 1 cell, which may be considered as a skin immunotoxicant. The reactive dyes including RB5 that were previously reported as skin sensitizers failed to induce inflammatory reactions under the conditions tested. The reactive dyes studied may pose a risk to human KC by induction of effects related to modulation of MMP-2 (RB5) and -9 (RB5 and RB2) and generation of ROS (RG19 and RB2). Thus, all these dyes need to be used with caution to avoid undesirable effects to consumers who may be exposed dermally.
Collapse
Affiliation(s)
- Daniela Morais Leme
- a Departamento de Genética , Universidade Federal do Paraná , Curitiba , PR , Brasil
| | - Andrea Sehr
- b Federal Environment Agency, Section Drinking Water and Swimming Pool Water Toxicology , Federal Environment Agency (UBA), Bad Elster Branch , Bad Elster , Germany
| | - Tamara Grummt
- b Federal Environment Agency, Section Drinking Water and Swimming Pool Water Toxicology , Federal Environment Agency (UBA), Bad Elster Branch , Bad Elster , Germany
| | | | - Thiago Jacomasso
- d Departamento de Bioquímica , Universidade Federal do Paraná , Curitiba , PR , Brasil
| | | | | | | | | | - Danielle Palma de Oliveira
- e Faculdade de Ciências Farmacêuticas de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , SP , Brasil
| |
Collapse
|
6
|
Malinauskiene L, Zimerson E, Bruze M, Ryberg K, Isaksson M. Sensitizing capacity of Disperse Orange 1 and its potential metabolites from azo reduction and their cross-reactivity pattern. Contact Dermatitis 2013; 69:40-8. [DOI: 10.1111/cod.12078] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 02/11/2013] [Indexed: 11/28/2022]
Affiliation(s)
| | - Erik Zimerson
- Department of Occupational and Environmental Dermatology; Lund University, Skåne University Hospital; Malmö; SE-20502; Sweden
| | - Magnus Bruze
- Department of Occupational and Environmental Dermatology; Lund University, Skåne University Hospital; Malmö; SE-20502; Sweden
| | | | - Marlene Isaksson
- Department of Occupational and Environmental Dermatology; Lund University, Skåne University Hospital; Malmö; SE-20502; Sweden
| |
Collapse
|
7
|
Assessment of the sensitizing potential of textile disperse dyes and some of their metabolites by the loose-fit coculture-based sensitization assay (LCSA). Arch Toxicol 2012; 86:733-40. [DOI: 10.1007/s00204-012-0811-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 01/31/2012] [Indexed: 10/28/2022]
|
8
|
Andersen FA. Annual Review of Cosmetic Ingredient Safety Assessments: 2007-2010. Int J Toxicol 2011; 30:73S-127S. [DOI: 10.1177/1091581811412618] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|