1
|
Abstract
ATM, a member of the PIKK-like protein family, plays a central role in responding to DNA double-strand breaks and other lesions to protect the genome against DNA damage. Loss of ATM's kinase function has been shown to increase the sensitivity of most cells to ionizing radiation. Therefore, ATM is thought to be a promising target for chemotherapy as a radiotherapy sensitizer. The mechanism of ATM in cancer treatment and the development of its inhibitors have become research hotspots. Here we present an overview of research concerning ATM protein domains, functions and inhibitors, as well as perspectives and insights for future development of ATM-targeting agents.
Collapse
|
2
|
von Stechow L, Olsen JV. Proteomics insights into DNA damage response and translating this knowledge to clinical strategies. Proteomics 2017; 17:1600018. [PMID: 27682984 PMCID: PMC5333460 DOI: 10.1002/pmic.201600018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/07/2016] [Accepted: 09/26/2016] [Indexed: 12/31/2022]
Abstract
Genomic instability is a critical driver in the process of cancer formation. At the same time, inducing DNA damage by irradiation or genotoxic compounds constitutes a key therapeutic strategy to kill fast-dividing cancer cells. Sensing of DNA lesions initiates a complex set of signalling pathways, collectively known as the DNA damage response (DDR). Deciphering DDR signalling pathways with high-throughput technologies could provide insights into oncogenic transformation, metastasis formation and therapy responses, and could build a basis for better therapeutic interventions in cancer treatment. Mass spectrometry (MS)-based proteomics emerged as a method of choice for global studies of proteins and their posttranslational modifications (PTMs). MS-based studies of the DDR have aided in delineating DNA damage-induced signalling responses. Those studies identified changes in abundance, interactions and modification of proteins in the context of genotoxic stress. Here we review ground-breaking MS-based proteomics studies, which analysed changes in protein abundance, protein-protein and protein-DNA interactions, phosphorylation, acetylation, ubiquitylation, SUMOylation and Poly(ADP-ribose)ylation (PARylation) in the DDR. Finally, we provide an outlook on how proteomics studies of the DDR could aid clinical developments on multiple levels.
Collapse
Affiliation(s)
- Louise von Stechow
- Proteomics ProgramNovo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Jesper V. Olsen
- Proteomics ProgramNovo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
3
|
Zhdanov VP. Kinetic aspects of enzyme-mediated repair of DNA single-strand breaks. Biosystems 2016; 150:194-199. [PMID: 27771386 DOI: 10.1016/j.biosystems.2016.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 10/20/2022]
Abstract
In cells and bacteria, DNA can be damaged in different ways. The efficient damage repair, mediated by various enzymes, is crucial for their survival. Most frequently, the damage is reduced to single-strand breaks. In human cells, according to the experiments, the repair of such breaks can mechanistically be divided into four steps including (i) the break detection, (ii) processing of damaged ends, (iii) gap filling, and (iv) ligation of unbound ends of the broken strand. The first and second steps run in parallel while the third and fourth steps are sequential. The author proposes a kinetic model describing these steps. It allows one to understand the likely dependence of the number of breaks in different states on enzyme concentrations. The dependence of these concentrations on the rate of the formation of breaks can be understood as well. In addition, the likely role of unzipping and zipping of the fragments of broken ends of the strand in the ligation step has been scrutinized taking the specifics of binding of DNA stands into account.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Division of Biological Physics, Department of Physics, Chalmers University of Technology, S-41296 Göteborg, Sweden; Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk 630090, Russia.
| |
Collapse
|
4
|
Yuan Q, Li B, Jiang S, Zhao Q, Duo J, Huang X. Gamma-Ray Treatment of Echinococcus Protoscoleces prior to Implantation in Mice Reduces Echinococcosis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9027489. [PMID: 27610384 PMCID: PMC5004023 DOI: 10.1155/2016/9027489] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/20/2016] [Accepted: 05/30/2016] [Indexed: 11/18/2022]
Abstract
Echinococcosis is a serious parasitic disease caused by Echinococcus tapeworms. Protoscoleces are sometimes released during surgical treatment for hydatid cysts, causing the recurrence of echinococcosis. Protoscoleces may be susceptible to radiation therapy. In this study Echinococcus protoscoleces were cultured in vitro and then divided into four different γ-ray irradiation dose groups (10 Gy, 20 Gy, 40 Gy, and 80 Gy) and a blank group. The protoscoleces were then implanted into the abdominal cavity of mice. Four months later, we observed that the incidence and weight of cysts declined with the increase of irradiation dose. γ-ray irradiation can suppress the generation of Echinococcus originated from protoscolex, the reason of which is due to the damaging to the structure of Echinococcus. Irradiation may prevent echinococcosis recurrence after surgical removal of hydatid cysts.
Collapse
Affiliation(s)
- Qing Yuan
- Department of General Surgery, Ya'an People's Hospital, Ya'an, China
| | - Bo Li
- Hepatobiliary Surgery, The Affiliated Hospital of Luzhou Medical College, Luzhou, China
| | - Shiping Jiang
- Department of General Surgery, Ya'an People's Hospital, Ya'an, China
| | - Qiang Zhao
- Department of General Surgery, Ya'an People's Hospital, Ya'an, China
| | - Ji Duo
- Ganzi State Hospital, Kangding, China
| | | |
Collapse
|
5
|
Abstract
Global phosphoproteomics investigations yield overwhelming datasets with up to tens of thousands of quantified phosphosites. The main challenge after acquiring such large-scale data is to extract the biological meaning and relate this to the experimental question at hand. Systems level analysis provides the best means for extracting functional insights from such types of datasets, and this has primed a rapid development of bioinformatics tools and resources over the last decade. Many of these tools are specialized databases that can be mined for annotation and pathway enrichment, whereas others provide a platform to generate functional protein networks and explore the relations between proteins of interest. The use of these tools requires careful consideration with regard to the input data, and the interpretation demands a critical approach. This chapter provides a summary of the most appropriate tools for systems analysis of phosphoproteomics datasets, and the considerations that are critical for acquiring meaningful output.
Collapse
Affiliation(s)
- Stephanie Munk
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, Bldg. 6.1, 2200, Copenhagen, Denmark
| | - Jan C Refsgaard
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, Bldg. 6.1, 2200, Copenhagen, Denmark
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, Bldg. 6.2, 2200, Copenhagen, Denmark
| | - Jesper V Olsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, Bldg. 6.1, 2200, Copenhagen, Denmark.
| |
Collapse
|
6
|
Staquicini FI, Qian MD, Salameh A, Dobroff AS, Edwards JK, Cimino DF, Moeller BJ, Kelly P, Nunez MI, Tang X, Liu DD, Lee JJ, Hong WK, Ferrara F, Bradbury ARM, Lobb RR, Edelman MJ, Sidman RL, Wistuba II, Arap W, Pasqualini R. Receptor tyrosine kinase EphA5 is a functional molecular target in human lung cancer. J Biol Chem 2015; 290:7345-59. [PMID: 25623065 PMCID: PMC4367244 DOI: 10.1074/jbc.m114.630525] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. Finally, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lung cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications.
Collapse
Affiliation(s)
- Fernanda I Staquicini
- From the University of New Mexico Cancer Center and the Divisions of Molecular Medicine and
| | - Ming D Qian
- the Departments of Genitourinary Medical Oncology
| | | | - Andrey S Dobroff
- From the University of New Mexico Cancer Center and the Divisions of Molecular Medicine and
| | | | - Daniel F Cimino
- From the University of New Mexico Cancer Center and the Divisions of Molecular Medicine and
| | | | - Patrick Kelly
- the Departments of Genitourinary Medical Oncology, Radiation Oncology
| | | | | | | | | | - Waun Ki Hong
- Thoracic/Head & Neck Medical Oncology, David H. Koch Center, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Fortunato Ferrara
- From the University of New Mexico Cancer Center and the Divisions of Molecular Medicine and
| | - Andrew R M Bradbury
- the Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Roy R Lobb
- Alvos Therapeutics, Arrowhead Research Corporation, Pasadena, California 91101
| | - Martin J Edelman
- Alvos Therapeutics, Arrowhead Research Corporation, Pasadena, California 91101
| | - Richard L Sidman
- the Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | | | - Wadih Arap
- From the University of New Mexico Cancer Center and Hematology/Medical Oncology, Department of Internal Medicine University of New Mexico School of Medicine, Albuquerque, New Mexico 87131-0001,
| | - Renata Pasqualini
- From the University of New Mexico Cancer Center and the Divisions of Molecular Medicine and
| |
Collapse
|
7
|
Taleei R, Girard PM, Nikjoo H. DSB repair model for mammalian cells in early S and G1 phases of the cell cycle: application to damage induced by ionizing radiation of different quality. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 779:5-14. [PMID: 25813721 DOI: 10.1016/j.mrgentox.2015.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 01/01/2023]
Abstract
The purpose of this work is to test the hypothesis that kinetics of double strand breaks (DSB) repair is governed by complexity of DSB. To test the hypothesis we used our recent published mechanistic mathematical model of DSB repair for DSB induced by selected protons, deuterons, and helium ions of different energies representing radiations of different qualities. In light of recent advances in experimental and computational techniques, the most appropriate method to study cellular responses in radiation therapy, and exposures to low doses of ionizing radiations is using mechanistic approaches. To this end, we proposed a 'bottom-up' approach to study cellular response that starts with the DNA damage. Monte Carlo track structure method was employed to simulate initial damage induced in the genomic DNA by direct and indirect effects. Among the different types of DNA damage, DSB are known to be induced in simple and complex forms. The DSB repair model in G1 and early S phases of the cell cycle was employed to calculate the repair kinetics. The model considers the repair of simple and complex DSB, and the DSB produced in the heterochromatin. The inverse sampling method was used to calculate the repair kinetics for each individual DSB. The overall repair kinetics for 500 DSB induced by single tracks of the radiation under test were compared with experimental results. The results show that the model is capable of predicting the repair kinetics for the DSB induced by radiations of different qualities within an accepted range of uncertainty.
Collapse
Affiliation(s)
- Reza Taleei
- Department of Radiation Physics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peter M Girard
- Radiation Biophysics Group, Department of Oncology-Pathology, Karolinska Institute, Stockholm SE171 76, Sweden
| | - Hooshang Nikjoo
- Radiation Biophysics Group, Department of Oncology-Pathology, Karolinska Institute, Stockholm SE171 76, Sweden.
| |
Collapse
|
8
|
Guérard M, Baum M, Bitsch A, Eisenbrand G, Elhajouji A, Epe B, Habermeyer M, Kaina B, Martus H, Pfuhler S, Schmitz C, Sutter A, Thomas A, Ziemann C, Froetschl R. Assessment of mechanisms driving non-linear dose–response relationships in genotoxicity testing. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 763:181-201. [DOI: 10.1016/j.mrrev.2014.11.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/31/2014] [Accepted: 11/01/2014] [Indexed: 01/15/2023]
|
9
|
Rashi-Elkeles S, Warnatz HJ, Elkon R, Kupershtein A, Chobod Y, Paz A, Amstislavskiy V, Sultan M, Safer H, Nietfeld W, Lehrach H, Shamir R, Yaspo ML, Shiloh Y. Parallel profiling of the transcriptome, cistrome, and epigenome in the cellular response to ionizing radiation. Sci Signal 2014; 7:rs3. [PMID: 24825921 DOI: 10.1126/scisignal.2005032] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The DNA damage response (DDR) is a vast signaling network that is robustly activated by DNA double-strand breaks, the critical lesion induced by ionizing radiation (IR). Although much of this response operates at the protein level, a critical component of the network sustains many DDR branches by modulating the cellular transcriptome. Using deep sequencing, we delineated three layers in the transcriptional response to IR in human breast cancer cells: changes in the expression of genes encoding proteins or long noncoding RNAs, alterations in genomic binding by key transcription factors, and dynamics of epigenetic markers of active promoters and enhancers. We identified protein-coding and previously unidentified noncoding genes that were responsive to IR, and demonstrated that IR-induced transcriptional dynamics was mediated largely by the transcription factors p53 and nuclear factor κB (NF-κB) and was primarily dependent on the kinase ataxia-telangiectasia mutated (ATM). The resultant data set provides a rich resource for understanding a basic, underlying component of a critical cellular stress response.
Collapse
Affiliation(s)
- Sharon Rashi-Elkeles
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hans-Jörg Warnatz
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Ran Elkon
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ana Kupershtein
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yuliya Chobod
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Arnon Paz
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Vyacheslav Amstislavskiy
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Marc Sultan
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Hershel Safer
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Wilfried Nietfeld
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Hans Lehrach
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Ron Shamir
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Marie-Laure Yaspo
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Yosef Shiloh
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
10
|
Genetic screens in mice for genome integrity maintenance and cancer predisposition. Curr Opin Genet Dev 2013; 24:1-7. [PMID: 24657530 DOI: 10.1016/j.gde.2013.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 10/16/2013] [Accepted: 10/19/2013] [Indexed: 12/26/2022]
Abstract
Genome instability is a feature of nearly all cancers and can be exploited for therapy. In addition, a growing number of genome maintenance genes have been associated with developmental disorders. Efforts to understand the role of genome instability in these processes will be greatly facilitated by a more comprehensive understanding of their genetic network. We highlight recent genetic screens in model organisms that have assisted in the discovery of novel regulators of genome stability and focus on the contribution of mice as a model organism to understanding the role of genome instability during embryonic development, tumour formation and cancer therapy.
Collapse
|