1
|
Nymark P, Bakker M, Dekkers S, Franken R, Fransman W, García-Bilbao A, Greco D, Gulumian M, Hadrup N, Halappanavar S, Hongisto V, Hougaard KS, Jensen KA, Kohonen P, Koivisto AJ, Dal Maso M, Oosterwijk T, Poikkimäki M, Rodriguez-Llopis I, Stierum R, Sørli JB, Grafström R. Toward Rigorous Materials Production: New Approach Methodologies Have Extensive Potential to Improve Current Safety Assessment Practices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904749. [PMID: 31913582 DOI: 10.1002/smll.201904749] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Advanced material development, including at the nanoscale, comprises costly and complex challenges coupled to ensuring human and environmental safety. Governmental agencies regulating safety have announced interest toward acceptance of safety data generated under the collective term New Approach Methodologies (NAMs), as such technologies/approaches offer marked potential to progress the integration of safety testing measures during innovation from idea to product launch of nanomaterials. Divided in overall eight main categories, searchable databases for grouping and read across purposes, exposure assessment and modeling, in silico modeling of physicochemical structure and hazard data, in vitro high-throughput and high-content screening assays, dose-response assessments and modeling, analyses of biological processes and toxicity pathways, kinetics and dose extrapolation, consideration of relevant exposure levels and biomarker endpoints typify such useful NAMs. Their application generally agrees with articulated stakeholder needs for improvement of safety testing procedures. They further fit for inclusion and add value in nanomaterials risk assessment tools. Overall 37 of 50 evaluated NAMs and tiered workflows applying NAMs are recommended for considering safer-by-design innovation, including guidance to the selection of specific NAMs in the eight categories. An innovation funnel enriched with safety methods is ultimately proposed under the central aim of promoting rigorous nanomaterials innovation.
Collapse
Affiliation(s)
- Penny Nymark
- Karolinska Institutet, Institute of Environmental Medicine, Nobels väg 13, 171 77, Stockholm, Sweden
- Department of Toxicology, Misvik Biology, Karjakatu 35 B, 20520, Turku, Finland
| | - Martine Bakker
- National Institute for Public Health and the Environment, RIVM, P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
| | - Susan Dekkers
- National Institute for Public Health and the Environment, RIVM, P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
| | - Remy Franken
- Netherlands Organisation for Applied Scientific Research, TNO, P.O. Box 96800, NL-2509 JE, The Hague, The Netherlands
| | - Wouter Fransman
- Netherlands Organisation for Applied Scientific Research, TNO, P.O. Box 96800, NL-2509 JE, The Hague, The Netherlands
| | - Amaia García-Bilbao
- GAIKER Technology Centre, Parque Tecnológico, Ed. 202, 48170, Zamudio, Bizkaia, Spain
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 6, 33720, Tampere, Finland
- Institute of Biotechnology, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Mary Gulumian
- National Institute for Occupational Health, 25 Hospital St, Constitution Hill, 2000, Johannesburg, South Africa
- Haematology and Molecular Medicine Department, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa
| | - Niels Hadrup
- National Research Center for the Work Environment, Lersø Parkallé 105, 2100, Copenhagen, Denmark
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Vesa Hongisto
- Department of Toxicology, Misvik Biology, Karjakatu 35 B, 20520, Turku, Finland
| | - Karin Sørig Hougaard
- National Research Center for the Work Environment, Lersø Parkallé 105, 2100, Copenhagen, Denmark
| | - Keld Alstrup Jensen
- National Research Center for the Work Environment, Lersø Parkallé 105, 2100, Copenhagen, Denmark
| | - Pekka Kohonen
- Karolinska Institutet, Institute of Environmental Medicine, Nobels väg 13, 171 77, Stockholm, Sweden
- Department of Toxicology, Misvik Biology, Karjakatu 35 B, 20520, Turku, Finland
| | - Antti Joonas Koivisto
- National Research Center for the Work Environment, Lersø Parkallé 105, 2100, Copenhagen, Denmark
| | - Miikka Dal Maso
- Aerosol Physics Laboratory, Physics Unit, Tampere University, Korkeakoulunkatu 6, 33720, Tampere, Finland
| | - Thies Oosterwijk
- Netherlands Organisation for Applied Scientific Research, TNO, P.O. Box 96800, NL-2509 JE, The Hague, The Netherlands
| | - Mikko Poikkimäki
- Aerosol Physics Laboratory, Physics Unit, Tampere University, Korkeakoulunkatu 6, 33720, Tampere, Finland
| | | | - Rob Stierum
- Netherlands Organisation for Applied Scientific Research, TNO, P.O. Box 96800, NL-2509 JE, The Hague, The Netherlands
| | - Jorid Birkelund Sørli
- National Research Center for the Work Environment, Lersø Parkallé 105, 2100, Copenhagen, Denmark
| | - Roland Grafström
- Karolinska Institutet, Institute of Environmental Medicine, Nobels väg 13, 171 77, Stockholm, Sweden
- Department of Toxicology, Misvik Biology, Karjakatu 35 B, 20520, Turku, Finland
| |
Collapse
|
2
|
Krewski D, Andersen ME, Tyshenko MG, Krishnan K, Hartung T, Boekelheide K, Wambaugh JF, Jones D, Whelan M, Thomas R, Yauk C, Barton-Maclaren T, Cote I. Toxicity testing in the 21st century: progress in the past decade and future perspectives. Arch Toxicol 2019; 94:1-58. [DOI: 10.1007/s00204-019-02613-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022]
|
3
|
Addressing systematic inconsistencies between in vitro and in vivo transcriptomic mode of action signatures. Toxicol In Vitro 2019; 58:1-12. [DOI: 10.1016/j.tiv.2019.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/14/2019] [Accepted: 02/14/2019] [Indexed: 12/26/2022]
|
4
|
Nymark P, Rieswijk L, Ehrhart F, Jeliazkova N, Tsiliki G, Sarimveis H, Evelo CT, Hongisto V, Kohonen P, Willighagen E, Grafström RC. A Data Fusion Pipeline for Generating and Enriching Adverse Outcome Pathway Descriptions. Toxicol Sci 2017; 162:264-275. [DOI: 10.1093/toxsci/kfx252] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Penny Nymark
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Toxicology, Misvik Biology, 20520 Turku, Finland
| | - Linda Rieswijk
- Department of Bioinformatics, NUTRIM, Maastricht University, 6200MD Maastricht, The Netherlands
- Division of Environmental Health Sciences, School of Public Health, University of California, 94720-7360 Berkeley, California, United States
| | - Friederike Ehrhart
- Department of Bioinformatics, NUTRIM, Maastricht University, 6200MD Maastricht, The Netherlands
| | | | - Georgia Tsiliki
- School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece
- Institute for the Management of Information Systems, ATHENA Research and Innovation Centre, 151 25 Athens, Greece
| | - Haralambos Sarimveis
- School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece
| | - Chris T Evelo
- Department of Bioinformatics, NUTRIM, Maastricht University, 6200MD Maastricht, The Netherlands
| | - Vesa Hongisto
- Department of Toxicology, Misvik Biology, 20520 Turku, Finland
| | - Pekka Kohonen
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Toxicology, Misvik Biology, 20520 Turku, Finland
| | - Egon Willighagen
- Department of Bioinformatics, NUTRIM, Maastricht University, 6200MD Maastricht, The Netherlands
| | - Roland C Grafström
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Toxicology, Misvik Biology, 20520 Turku, Finland
| |
Collapse
|
5
|
Kohonen P, Parkkinen JA, Willighagen EL, Ceder R, Wennerberg K, Kaski S, Grafström RC. A transcriptomics data-driven gene space accurately predicts liver cytopathology and drug-induced liver injury. Nat Commun 2017; 8:15932. [PMID: 28671182 PMCID: PMC5500850 DOI: 10.1038/ncomms15932] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 05/15/2017] [Indexed: 01/17/2023] Open
Abstract
Predicting unanticipated harmful effects of chemicals and drug molecules is a difficult and costly task. Here we utilize a 'big data compacting and data fusion'-concept to capture diverse adverse outcomes on cellular and organismal levels. The approach generates from transcriptomics data set a 'predictive toxicogenomics space' (PTGS) tool composed of 1,331 genes distributed over 14 overlapping cytotoxicity-related gene space components. Involving ∼2.5 × 108 data points and 1,300 compounds to construct and validate the PTGS, the tool serves to: explain dose-dependent cytotoxicity effects, provide a virtual cytotoxicity probability estimate intrinsic to omics data, predict chemically-induced pathological states in liver resulting from repeated dosing of rats, and furthermore, predict human drug-induced liver injury (DILI) from hepatocyte experiments. Analysing 68 DILI-annotated drugs, the PTGS tool outperforms and complements existing tests, leading to a hereto-unseen level of DILI prediction accuracy.
Collapse
Affiliation(s)
- Pekka Kohonen
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Box 210, SE-17177 Stockholm, Sweden
| | - Juuso A Parkkinen
- Helsinki Institute for Information Technology HIIT, Department of Computer Science, Aalto University, Konemiehentie 2, P.O. Box 15400, 00076 Aalto, Finland
| | - Egon L Willighagen
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Box 210, SE-17177 Stockholm, Sweden.,Department of Bioinformatics-BiGCaT, Maastricht University, Universiteitssingel 50, P.O. Box 616, UNS 50 Box19, NL-6200 MD Maastricht, The Netherlands
| | - Rebecca Ceder
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Box 210, SE-17177 Stockholm, Sweden
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Tukholmankatu 8, P.O. Box 20, FI-00014 Helsinki, Finland
| | - Samuel Kaski
- Helsinki Institute for Information Technology HIIT, Department of Computer Science, Aalto University, Konemiehentie 2, P.O. Box 15400, 00076 Aalto, Finland.,Helsinki Institute for Information Technology HIIT, Department of Computer Science, University of Helsinki, Gustaf Hällströmin katu 2b, P.O. Box 68, FI-00014 Helsinki, Finland
| | - Roland C Grafström
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Box 210, SE-17177 Stockholm, Sweden
| |
Collapse
|
6
|
Pendse SN, Maertens A, Rosenberg M, Roy D, Fasani RA, Vantangoli MM, Madnick SJ, Boekelheide K, Fornace AJ, Odwin SA, Yager JD, Hartung T, Andersen ME, McMullen PD. Information-dependent enrichment analysis reveals time-dependent transcriptional regulation of the estrogen pathway of toxicity. Arch Toxicol 2016; 91:1749-1762. [PMID: 27592001 PMCID: PMC5364265 DOI: 10.1007/s00204-016-1824-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/22/2016] [Indexed: 02/06/2023]
Abstract
The twenty-first century vision for toxicology involves a transition away from high-dose animal studies to in vitro and computational models (NRC in Toxicity testing in the 21st century: a vision and a strategy, The National Academies Press, Washington, DC, 2007). This transition requires mapping pathways of toxicity by understanding how in vitro systems respond to chemical perturbation. Uncovering transcription factors/signaling networks responsible for gene expression patterns is essential for defining pathways of toxicity, and ultimately, for determining the chemical modes of action through which a toxicant acts. Traditionally, transcription factor identification is achieved via chromatin immunoprecipitation studies and summarized by calculating which transcription factors are statistically associated with up- and downregulated genes. These lists are commonly determined via statistical or fold-change cutoffs, a procedure that is sensitive to statistical power and may not be as useful for determining transcription factor associations. To move away from an arbitrary statistical or fold-change-based cutoff, we developed, in the context of the Mapping the Human Toxome project, an enrichment paradigm called information-dependent enrichment analysis (IDEA) to guide identification of the transcription factor network. We used a test case of activation in MCF-7 cells by 17β estradiol (E2). Using this new approach, we established a time course for transcriptional and functional responses to E2. ERα and ERβ were associated with short-term transcriptional changes in response to E2. Sustained exposure led to recruitment of additional transcription factors and alteration of cell cycle machinery. TFAP2C and SOX2 were the transcription factors most highly correlated with dose. E2F7, E2F1, and Foxm1, which are involved in cell proliferation, were enriched only at 24 h. IDEA should be useful for identifying candidate pathways of toxicity. IDEA outperforms gene set enrichment analysis (GSEA) and provides similar results to weighted gene correlation network analysis, a platform that helps to identify genes not annotated to pathways.
Collapse
Affiliation(s)
- Salil N Pendse
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC, USA.,ScitoVation, LLC, 6 Davis Drive, PO Box 110566, Research Triangle Park, NC, 27709, USA
| | - Alexandra Maertens
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | | - Samantha J Madnick
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Albert J Fornace
- Department of Biochemistry and Molecular and Cellular Biology, and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Shelly-Ann Odwin
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - James D Yager
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Center for Alternatives to Animal Testing-Europe, University of Konstanz, Constance, Germany
| | - Melvin E Andersen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC, USA.,ScitoVation, LLC, 6 Davis Drive, PO Box 110566, Research Triangle Park, NC, 27709, USA
| | - Patrick D McMullen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC, USA. .,ScitoVation, LLC, 6 Davis Drive, PO Box 110566, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
7
|
Collins AR, Annangi B, Rubio L, Marcos R, Dorn M, Merker C, Estrela-Lopis I, Cimpan MR, Ibrahim M, Cimpan E, Ostermann M, Sauter A, Yamani NE, Shaposhnikov S, Chevillard S, Paget V, Grall R, Delic J, de-Cerio FG, Suarez-Merino B, Fessard V, Hogeveen KN, Fjellsbø LM, Pran ER, Brzicova T, Topinka J, Silva MJ, Leite PE, Ribeiro AR, Granjeiro JM, Grafström R, Prina-Mello A, Dusinska M. High throughput toxicity screening and intracellular detection of nanomaterials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27273980 PMCID: PMC5215403 DOI: 10.1002/wnan.1413] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/08/2016] [Accepted: 04/12/2016] [Indexed: 12/25/2022]
Abstract
With the growing numbers of nanomaterials (NMs), there is a great demand for rapid and reliable ways of testing NM safety—preferably using in vitro approaches, to avoid the ethical dilemmas associated with animal research. Data are needed for developing intelligent testing strategies for risk assessment of NMs, based on grouping and read‐across approaches. The adoption of high throughput screening (HTS) and high content analysis (HCA) for NM toxicity testing allows the testing of numerous materials at different concentrations and on different types of cells, reduces the effect of inter‐experimental variation, and makes substantial savings in time and cost. HTS/HCA approaches facilitate the classification of key biological indicators of NM‐cell interactions. Validation of in vitroHTS tests is required, taking account of relevance to in vivo results. HTS/HCA approaches are needed to assess dose‐ and time‐dependent toxicity, allowing prediction of in vivo adverse effects. Several HTS/HCA methods are being validated and applied for NM testing in the FP7 project NANoREG, including Label‐free cellular screening of NM uptake, HCA, High throughput flow cytometry, Impedance‐based monitoring, Multiplex analysis of secreted products, and genotoxicity methods—namely High throughput comet assay, High throughput in vitro micronucleus assay, and γH2AX assay. There are several technical challenges with HTS/HCA for NM testing, as toxicity screening needs to be coupled with characterization of NMs in exposure medium prior to the test; possible interference of NMs with HTS/HCA techniques is another concern. Advantages and challenges of HTS/HCA approaches in NM safety are discussed. WIREs Nanomed Nanobiotechnol 2017, 9:e1413. doi: 10.1002/wnan.1413 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Andrew R Collins
- Comet Biotech AS, and Department of Nutrition, University of Oslo, Norway
| | | | - Laura Rubio
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER Epidemiología y Salud Pública, ISCIII, Spain
| | - Marco Dorn
- Institute of Biophysics and Medical Physics, University of Leipzig, Leipzig, Germany
| | - Carolin Merker
- Institute of Biophysics and Medical Physics, University of Leipzig, Leipzig, Germany
| | - Irina Estrela-Lopis
- Institute of Biophysics and Medical Physics, University of Leipzig, Leipzig, Germany
| | - Mihaela Roxana Cimpan
- Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Norway
| | - Mohamed Ibrahim
- Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Norway
| | - Emil Cimpan
- Department of Electrical Engineering, Faculty of Engineering, Bergen University College, Norway
| | - Melanie Ostermann
- Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Norway
| | - Alexander Sauter
- Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Norway
| | - Naouale El Yamani
- Comet Biotech AS, and Department of Nutrition, University of Oslo, Norway.,Health Effects Group, Department of Environmental Chemistry, NILU- Norwegian Institute for Air Research, Kjeller, Norway
| | | | - Sylvie Chevillard
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Direction des Sciences du Vivant, Institut de Radiobiologie Cellulaire et Moléculaire, Service de Radiobiologie Expérimentale et d'Innovation Technologique, Laboratoire de Cancérologie Expérimentale, Fontenay-aux-Roses cedex, France
| | - Vincent Paget
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Direction des Sciences du Vivant, Institut de Radiobiologie Cellulaire et Moléculaire, Service de Radiobiologie Expérimentale et d'Innovation Technologique, Laboratoire de Cancérologie Expérimentale, Fontenay-aux-Roses cedex, France
| | - Romain Grall
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Direction des Sciences du Vivant, Institut de Radiobiologie Cellulaire et Moléculaire, Service de Radiobiologie Expérimentale et d'Innovation Technologique, Laboratoire de Cancérologie Expérimentale, Fontenay-aux-Roses cedex, France
| | - Jozo Delic
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Direction des Sciences du Vivant, Institut de Radiobiologie Cellulaire et Moléculaire, Service de Radiobiologie Expérimentale et d'Innovation Technologique, Laboratoire de Cancérologie Expérimentale, Fontenay-aux-Roses cedex, France
| | | | | | - Valérie Fessard
- ANSES Fougères Laboratory, Contaminant Toxicology Unit, France
| | | | - Lise Maria Fjellsbø
- Health Effects Group, Department of Environmental Chemistry, NILU- Norwegian Institute for Air Research, Kjeller, Norway
| | - Elise Runden Pran
- Health Effects Group, Department of Environmental Chemistry, NILU- Norwegian Institute for Air Research, Kjeller, Norway
| | - Tana Brzicova
- Institute of Experimental Medicine AS CR, Prague, Czech Republic
| | - Jan Topinka
- Institute of Experimental Medicine AS CR, Prague, Czech Republic
| | - Maria João Silva
- Human Genetics Department, National Institute of Health Doutor Ricardo Jorge and Centre for Toxicogenomics and Human Health, NMS/FCM, UNL, Lisbon, Portugal
| | - P E Leite
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil
| | - A R Ribeiro
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil
| | - J M Granjeiro
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil
| | - Roland Grafström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Adriele Prina-Mello
- Nanomedicine Group, Trinity Centre for Health Sciences, Trinity College Dublin, Dublin, Ireland
| | - Maria Dusinska
- Health Effects Group, Department of Environmental Chemistry, NILU- Norwegian Institute for Air Research, Kjeller, Norway
| |
Collapse
|
8
|
Grafström RC, Nymark P, Hongisto V, Spjuth O, Ceder R, Willighagen E, Hardy B, Kaski S, Kohonen P. Toward the Replacement of Animal Experiments through the Bioinformatics-driven Analysis of 'Omics' Data from Human Cell Cultures. Altern Lab Anim 2016; 43:325-32. [PMID: 26551289 DOI: 10.1177/026119291504300506] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This paper outlines the work for which Roland Grafström and Pekka Kohonen were awarded the 2014 Lush Science Prize. The research activities of the Grafström laboratory have, for many years, covered cancer biology studies, as well as the development and application of toxicity-predictive in vitro models to determine chemical safety. Through the integration of in silico analyses of diverse types of genomics data (transcriptomic and proteomic), their efforts have proved to fit well into the recently-developed Adverse Outcome Pathway paradigm. Genomics analysis within state-of-the-art cancer biology research and Toxicology in the 21st Century concepts share many technological tools. A key category within the Three Rs paradigm is the Replacement of animals in toxicity testing with alternative methods, such as bioinformatics-driven analyses of data obtained from human cell cultures exposed to diverse toxicants. This work was recently expanded within the pan-European SEURAT-1 project (Safety Evaluation Ultimately Replacing Animal Testing), to replace repeat-dose toxicity testing with data-rich analyses of sophisticated cell culture models. The aims and objectives of the SEURAT project have been to guide the application, analysis, interpretation and storage of 'omics' technology-derived data within the service-oriented sub-project, ToxBank. Particularly addressing the Lush Science Prize focus on the relevance of toxicity pathways, a 'data warehouse' that is under continuous expansion, coupled with the development of novel data storage and management methods for toxicology, serve to address data integration across multiple 'omics' technologies. The prize winners' guiding principles and concepts for modern knowledge management of toxicological data are summarised. The translation of basic discovery results ranged from chemical-testing and material-testing data, to information relevant to human health and environmental safety.
Collapse
Affiliation(s)
- Roland C Grafström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Penny Nymark
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Vesa Hongisto
- Toxicology Department, Misvik Biology Corporation, Turku, Finland
| | - Ola Spjuth
- Department of Medical Epidemiology and Biostatistics, Swedish e-Science Research Centre, Karolinska Institutet, Stockholm, Sweden and Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Rebecca Ceder
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Egon Willighagen
- Department of Bioinformatics-BiGCat, Maastricht University, Maastricht, The Netherlands
| | - Barry Hardy
- Douglas Connect GmbH, Zeiningen, Switzerland
| | - Samuel Kaski
- Helsinki Institute for Information Technology, Aalto University, Department of Computer Science, Helsinki, Finland
| | - Pekka Kohonen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Toxicology: a discipline in need of academic anchoring--the point of view of the German Society of Toxicology. Arch Toxicol 2015; 89:1881-93. [PMID: 26314262 PMCID: PMC4572062 DOI: 10.1007/s00204-015-1577-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 08/10/2015] [Indexed: 12/29/2022]
Abstract
The paper describes the importance of toxicology as a discipline, its past achievements, current scientific challenges, and future development. Toxicological expertise is instrumental in the reduction of human health risks arising from chemicals and drugs. Toxicological assessment is needed to evaluate evidence and arguments, whether or not there is a scientific base for concern. The immense success already achieved by toxicological work is exemplified by reduced pollution of air, soil, water, and safer working places. Predominantly predictive toxicological testing is derived from the findings to assess risks to humans and the environment. Assessment of the adversity of molecular effects (including epigenetic effects), the effects of mixtures, and integration of exposure and biokinetics into in vitro testing are emerging challenges for toxicology. Toxicology is a translational science with its base in fundamental science. Academic institutions play an essential part by providing scientific innovation and education of young scientists.
Collapse
|