1
|
Liu Y, Yang H, Liu X, Gu H, Li Y, Sun C. Protein acetylation: a novel modus of obesity regulation. J Mol Med (Berl) 2021; 99:1221-1235. [PMID: 34061242 DOI: 10.1007/s00109-021-02082-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/09/2021] [Accepted: 04/21/2021] [Indexed: 11/27/2022]
Abstract
Obesity is a chronic epidemic disease worldwide which has become one of the important public health issues. It is a process that excessive accumulation of adipose tissue caused by long-term energy intake exceeding energy expenditure. So far, the prevention and treatment strategies of obesity on individuals and population have not been successful in the long term. Acetylation is one of the most common ways of protein post-translational modification (PTM). It exists on thousands of non-histone proteins in almost every cell chamber. It has many influences on protein levels and metabolome levels, which is involved in a variety of metabolic reactions, including sugar metabolism, tricarboxylic acid cycle, and fatty acid metabolism, which are closely related to biological activities. Studies have shown that protein acetylation levels are dynamically regulated by lysine acetyltransferases (KATs) and lysine deacetylases (KDACs). Protein acetylation modifies protein-protein and protein-DNA interactions and regulates the activity of enzymes or cytokines which is related to obesity in order to participate in the occurrence and treatment of obesity-related metabolic diseases. Therefore, we speculated that acetylation was likely to become effective means of controlling obesity in the future. In consequence, this review focuses on the mechanisms of protein acetylation controlled obesity, to provide theoretical basis for controlling obesity and curing obesity-related diseases, which is a significance for regulating obesity in the future. This review will focus on the role of protein acetylation in controlling obesity.
Collapse
Affiliation(s)
- Yuexia Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hong Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xuanchen Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huihui Gu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yizhou Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chao Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
2
|
Chen X, Jia W, Zhu L, Mao L, Zhang Y. Recent advances in heterocyclic aromatic amines: An update on food safety and hazardous control from food processing to dietary intake. Compr Rev Food Sci Food Saf 2019; 19:124-148. [DOI: 10.1111/1541-4337.12511] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/17/2019] [Accepted: 10/30/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Xiaoqian Chen
- Zhejiang Key Laboratory for Agro‐Food Processing, National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou China
| | - Wei Jia
- Zhejiang Key Laboratory for Agro‐Food Processing, National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou China
| | - Li Zhu
- Zhejiang Key Laboratory for Agro‐Food Processing, National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou China
| | - Lei Mao
- Department of NutritionSchool of Public Health, Zhejiang University School of Medicine Hangzhou China
| | - Yu Zhang
- Zhejiang Key Laboratory for Agro‐Food Processing, National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou China
| |
Collapse
|
3
|
Association of N-acetyltransferase-2 and glutathione S-transferase polymorphisms with idiopathic male infertility in Vietnam male subjects. Chem Biol Interact 2018; 286:11-16. [DOI: 10.1016/j.cbi.2018.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/16/2018] [Accepted: 03/01/2018] [Indexed: 02/04/2023]
|
4
|
Hein DW, Zhang X, Doll MA. Role of N-acetyltransferase 2 acetylation polymorphism in 4, 4'-methylene bis (2-chloroaniline) biotransformation. Toxicol Lett 2018; 283:100-105. [PMID: 29180287 PMCID: PMC5745265 DOI: 10.1016/j.toxlet.2017.11.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/27/2017] [Accepted: 11/23/2017] [Indexed: 02/02/2023]
Abstract
Arylamine N-acetyltransferase 1 (NAT1) and 2 (NAT2) catalyze the acetylation of arylamine carcinogens. Single nucleotide polymorphisms in the NAT2 coding exon present in NAT2 haplotypes encode allozymes with reduced N-acetyltransferase activity towards the N-acetylation of arylamine carcinogens and the O-acetylation of their N-hydroxylated metabolites. NAT2 acetylator phenotype modifies urinary bladder cancer risk following exposures to arylamine carcinogens such as 4-aminobiphenyl. 4, 4'-methylene bis (2-chloroaniline) (MOCA) is a Group 1 carcinogen for which a role of the NAT2 acetylation polymorphism on cancer risk is unknown. We investigated the role of NAT2 and the genetic acetylation polymorphism on both MOCA N-acetylation and N-hydroxy-MOCA O-acetylation. MOCA N-acetylation exhibited a robust gene dose response in rabbit liver cytosol and in cryopreserved human hepatocytes derived from individuals of rapid, intermediate and slow acetylator NAT2 genotype. MOCA exhibited about 4-fold higher affinity for recombinant human NAT2 than NAT1. Recombinant human NAT2*4 (reference) and 15 variant recombinant human NAT2 allozymes catalyzed both the N-acetylation of MOCA and the O-acetylation of N-hydroxy-MOCA. Human NAT2 5, NAT2 6, NAT2 7 and NAT2 14 allozymes catalyzed MOCA N-acetylation and N-hydroxy-O-acetylation at rates much lower than the reference NAT2 4 allozyme. In conclusion, our results show that NAT2 acetylator genotype has an important role in MOCA metabolism and suggest that risk assessments related to MOCA exposures consider accounting for NAT2 acetylator phenotype in the analysis.
Collapse
Affiliation(s)
- David W Hein
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY USA.
| | - Xiaoyan Zhang
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY USA
| | - Mark A Doll
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY USA
| |
Collapse
|