1
|
Luconi M, Sogorb MA, Markert UR, Benfenati E, May T, Wolbank S, Roncaglioni A, Schmidt A, Straccia M, Tait S. Human-Based New Approach Methodologies in Developmental Toxicity Testing: A Step Ahead from the State of the Art with a Feto-Placental Organ-on-Chip Platform. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15828. [PMID: 36497907 PMCID: PMC9737555 DOI: 10.3390/ijerph192315828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Developmental toxicity testing urgently requires the implementation of human-relevant new approach methodologies (NAMs) that better recapitulate the peculiar nature of human physiology during pregnancy, especially the placenta and the maternal/fetal interface, which represent a key stage for human lifelong health. Fit-for-purpose NAMs for the placental-fetal interface are desirable to improve the biological knowledge of environmental exposure at the molecular level and to reduce the high cost, time and ethical impact of animal studies. This article reviews the state of the art on the available in vitro (placental, fetal and amniotic cell-based systems) and in silico NAMs of human relevance for developmental toxicity testing purposes; in addition, we considered available Adverse Outcome Pathways related to developmental toxicity. The OECD TG 414 for the identification and assessment of deleterious effects of prenatal exposure to chemicals on developing organisms will be discussed to delineate the regulatory context and to better debate what is missing and needed in the context of the Developmental Origins of Health and Disease hypothesis to significantly improve this sector. Starting from this analysis, the development of a novel human feto-placental organ-on-chip platform will be introduced as an innovative future alternative tool for developmental toxicity testing, considering possible implementation and validation strategies to overcome the limitation of the current animal studies and NAMs available in regulatory toxicology and in the biomedical field.
Collapse
Affiliation(s)
- Michaela Luconi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
- I.N.B.B. (Istituto Nazionale Biostrutture e Biosistemi), Viale Medaglie d’Oro 305, 00136 Rome, Italy
| | - Miguel A. Sogorb
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avenida de la Universidad s/n, 03202 Elche, Spain
| | - Udo R. Markert
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Emilio Benfenati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Tobias May
- InSCREENeX GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Susanne Wolbank
- Ludwig Boltzmann Institut for Traumatology, The Research Center in Cooperation with AUVA, Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, 1200 Vienna, Austria
| | - Alessandra Roncaglioni
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Astrid Schmidt
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Marco Straccia
- FRESCI by Science&Strategy SL, C/Roure Monjo 33, Vacarisses, 08233 Barcelona, Spain
| | - Sabrina Tait
- Centre for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
2
|
An efficient neuron-astrocyte differentiation protocol from human embryonic stem cell-derived neural progenitors to assess chemical-induced developmental neurotoxicity. Reprod Toxicol 2020; 98:107-116. [PMID: 32931842 DOI: 10.1016/j.reprotox.2020.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/13/2020] [Accepted: 09/07/2020] [Indexed: 01/10/2023]
Abstract
Human embryonic stem cell neuronal differentiation models provide promising in vitro tools for the prediction of developmental neurotoxicity of chemicals. Such models mimic essential elements of human relevant neuronal development, including the differentiation of a variety of brain cell types and their neuronal network formation as evidenced by specific gene and protein biomarkers. However, the reproducibility and lengthy culture duration of cell models present drawbacks and delay regulatory implementation. Here we present a relatively short and robust protocol to differentiate H9-derived neural progenitor cells (NPCs) into a neuron-astrocyte co-culture. When frozen-stored NPCs were re-cultured and induced into neuron-astrocyte differentiation, they showed gene- and protein expression typical for these cells, and most notably they exhibited spontaneous electrical activity within three days of culture as measured by a multi-well micro-electrode array. Modulating the ratio of astrocytes and neurons through different growth factors including glial cell line-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), and ciliary neurotrophic factor (CNTF) did not compromise the ability to develop spontaneous electrical activity. This robust neuronal differentiation model may serve as a functional component of a testing strategy for unravelling mechanisms of developmental neurotoxicity.
Collapse
|