1
|
Facheng Z, Rongli Q, Li Z, Baoxiang W, Sheng Y, Mingqiu S. Shaoyao Gancao decoction, an Ancient Classical Prescription: a review on its chemical composition, pharmacology, pharmacokinetics, clinical applications, and toxicology. J Pharm Pharmacol 2025:rgaf017. [PMID: 40328511 DOI: 10.1093/jpp/rgaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/27/2025] [Indexed: 05/08/2025]
Abstract
OBJECTIVES Shaoyao Gancao decoction (SGD) is a famous Ancient Classical Prescription (ACP) from "Treatise on Febrile Diseases." It has been clinically used for spasm- and pain-related disorders induced by insufficiency of Qi and blood and malnutrition of tendons and vessels for thousands of years. To expand comprehensive understanding and to highlight the importance of more effective utilization, this study aimed to provide a comprehensive review of SGD covering multiple research fields. METHODS Some databases, including PubMed, Web of Science, Google Scholar, and China National Knowledge Infrastructure, were used to collect the related information with "Shaoyao Gancao decoction" and similar ones as the keywords. KEY FINDINGS Phytochemical researches revealed that flavonoids and monoterpenoids were the predominant components in SGD. It was documented that SGD had demonstrated a variety of effects, such as analgesic and anti-inflammatory activity, neuroprotection, antispasmodic activity, gastrointestinal protection, hepatoprotection, anti-asthma activity, and effects on gynecological diseases. As for its toxicology, pseudoaldosteronism occasionally occurred and 18β-glycyrrhetyl-3-O-sulfate was believed to be a causative agent. CONCLUSIONS As a whole, many valuable achievements have been made, exhibiting great attraction and potential of SGD as a famous ACP. This review is also expected to facilitate SGD application and research in the future.
Collapse
Affiliation(s)
- Zhang Facheng
- Polifarma (Nanjing) Co., Ltd., Nanjing, 210038, PR China
| | - Qiu Rongli
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zhang Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Wu Baoxiang
- Polifarma (Nanjing) Co., Ltd., Nanjing, 210038, PR China
| | - Yu Sheng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Shan Mingqiu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| |
Collapse
|
2
|
Sakoda R, Ishiuchi K, Yoshino T, Tsunoo Y, Namiki T, Ogawa-Ochiai K, Minamizawa K, Fukunaga K, Watanabe K, Makino T. 3- epi-18 β-Glycyrrhetinic Acid or Its Glucuronide, the Metabolites of Glycyrrhizinic Acid with Individual Differences, Correlated with Diagnostic Marker for Licorice-Induced Pseudoaldosteronism in Humans. Drug Metab Dispos 2024; 52:1407-1416. [PMID: 39284704 DOI: 10.1124/dmd.124.001840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/11/2024] [Indexed: 11/17/2024] Open
Abstract
Licorice is a crude drug that is used in traditional Japanese Kampo medicine and is also used as a sweetener. Occasionally, it causes pseudoaldosteronism (PsA) as a side effect. The major symptoms include hypokalemia, hypertension, edema, and low plasma aldosterone levels. PsA might be caused by the metabolites of glycyrrhizinic acid (GL), a component of licorice. The development of PsA markedly varies among individuals; however, the factors that cause these individual differences remain unknown. In this study, 78 patients who consumed Kampo medicines containing licorice were enrolled, and their laboratory data, including serum potassium levels, plasma aldosterone concentrations (PAC), and the concentrations of GL metabolites in the residual blood and/or urine samples were evaluated. Of the 78 participants, 18β-glycyrrhetinic acid (GA), 3-epi-GA, 3-oxo-GA, 18β-glycyrrhetinyl-30-O-glucuronide (GA30G), and 3-epi-GA30G were detected in the serum samples of 65, 47, 63, 62, and three participants, respectively. Of the 29 urine samples collected, GA30G and 3-epi-GA30G were detected in 27 and 19 samples. 3-epi-GA30G is a newly found GL metabolite. Moreover, 3-epi-GA, 3-oxo-GA, and 3-epi-GA30G were identified in human samples for the first time. High individual differences were found in the appearances of 3-epi-GA in serum and 3-epi-GA30G in urine, and the concentrations of these metabolites were correlated with serum PsA markers. The inhibitory titers of 3-epi-GA, 3-oxo-GA, GA30G, and 3-epi-GA30G on human 11β-hydroxysteroid dehydrogenase type 2 were almost similar. These findings suggest that 3-epi-GA and/or 3-epi-GA30G are associated with individual differences in the development of PsA. SIGNIFICANCE STATEMENT: In this study, we detected 3-epi-18β-glycyrrhetinic acid (3-epi-GA) in human serum for the first time. We also identified 3-epi-18β-glycyrrhetinyl-30-O-glucuronide (3-epi-GA30G) as a novel glycyrrhizinic acid (GL) metabolite in human urine. These GL metabolite levels showed correlations with markers of PsA. Additionally, there are individual differences in whether they appear in the serum/urine. In conclusion, 3-epi-GA/3-epi-GA30G correlates with individual differences in the development of PsA.
Collapse
Affiliation(s)
- Ryota Sakoda
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, Japan (R.S., K.I., Y.T., T.M.); Center for Kampo Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan (T.Y., K.F., K.W.); Department of Japanese Oriental (Kampo) Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Japan (T.N.); Department of Japanese Traditional (Kampo) Medicine, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa-City, Ishikawa, Japan (K.O.-O.); Kampo Clinical Center, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan (K.O.-O.); Department of Oriental Medicine, Kameda Medical Center, 929 Higashi-cho, Kamogawa, Chiba, Japan (K.M.); Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan (K.F.)
| | - Kan'ichiro Ishiuchi
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, Japan (R.S., K.I., Y.T., T.M.); Center for Kampo Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan (T.Y., K.F., K.W.); Department of Japanese Oriental (Kampo) Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Japan (T.N.); Department of Japanese Traditional (Kampo) Medicine, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa-City, Ishikawa, Japan (K.O.-O.); Kampo Clinical Center, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan (K.O.-O.); Department of Oriental Medicine, Kameda Medical Center, 929 Higashi-cho, Kamogawa, Chiba, Japan (K.M.); Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan (K.F.)
| | - Tetsuhiro Yoshino
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, Japan (R.S., K.I., Y.T., T.M.); Center for Kampo Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan (T.Y., K.F., K.W.); Department of Japanese Oriental (Kampo) Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Japan (T.N.); Department of Japanese Traditional (Kampo) Medicine, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa-City, Ishikawa, Japan (K.O.-O.); Kampo Clinical Center, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan (K.O.-O.); Department of Oriental Medicine, Kameda Medical Center, 929 Higashi-cho, Kamogawa, Chiba, Japan (K.M.); Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan (K.F.)
| | - Yuna Tsunoo
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, Japan (R.S., K.I., Y.T., T.M.); Center for Kampo Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan (T.Y., K.F., K.W.); Department of Japanese Oriental (Kampo) Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Japan (T.N.); Department of Japanese Traditional (Kampo) Medicine, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa-City, Ishikawa, Japan (K.O.-O.); Kampo Clinical Center, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan (K.O.-O.); Department of Oriental Medicine, Kameda Medical Center, 929 Higashi-cho, Kamogawa, Chiba, Japan (K.M.); Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan (K.F.)
| | - Takao Namiki
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, Japan (R.S., K.I., Y.T., T.M.); Center for Kampo Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan (T.Y., K.F., K.W.); Department of Japanese Oriental (Kampo) Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Japan (T.N.); Department of Japanese Traditional (Kampo) Medicine, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa-City, Ishikawa, Japan (K.O.-O.); Kampo Clinical Center, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan (K.O.-O.); Department of Oriental Medicine, Kameda Medical Center, 929 Higashi-cho, Kamogawa, Chiba, Japan (K.M.); Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan (K.F.)
| | - Keiko Ogawa-Ochiai
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, Japan (R.S., K.I., Y.T., T.M.); Center for Kampo Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan (T.Y., K.F., K.W.); Department of Japanese Oriental (Kampo) Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Japan (T.N.); Department of Japanese Traditional (Kampo) Medicine, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa-City, Ishikawa, Japan (K.O.-O.); Kampo Clinical Center, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan (K.O.-O.); Department of Oriental Medicine, Kameda Medical Center, 929 Higashi-cho, Kamogawa, Chiba, Japan (K.M.); Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan (K.F.)
| | - Kiyoshi Minamizawa
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, Japan (R.S., K.I., Y.T., T.M.); Center for Kampo Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan (T.Y., K.F., K.W.); Department of Japanese Oriental (Kampo) Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Japan (T.N.); Department of Japanese Traditional (Kampo) Medicine, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa-City, Ishikawa, Japan (K.O.-O.); Kampo Clinical Center, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan (K.O.-O.); Department of Oriental Medicine, Kameda Medical Center, 929 Higashi-cho, Kamogawa, Chiba, Japan (K.M.); Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan (K.F.)
| | - Koichi Fukunaga
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, Japan (R.S., K.I., Y.T., T.M.); Center for Kampo Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan (T.Y., K.F., K.W.); Department of Japanese Oriental (Kampo) Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Japan (T.N.); Department of Japanese Traditional (Kampo) Medicine, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa-City, Ishikawa, Japan (K.O.-O.); Kampo Clinical Center, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan (K.O.-O.); Department of Oriental Medicine, Kameda Medical Center, 929 Higashi-cho, Kamogawa, Chiba, Japan (K.M.); Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan (K.F.)
| | - Kenji Watanabe
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, Japan (R.S., K.I., Y.T., T.M.); Center for Kampo Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan (T.Y., K.F., K.W.); Department of Japanese Oriental (Kampo) Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Japan (T.N.); Department of Japanese Traditional (Kampo) Medicine, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa-City, Ishikawa, Japan (K.O.-O.); Kampo Clinical Center, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan (K.O.-O.); Department of Oriental Medicine, Kameda Medical Center, 929 Higashi-cho, Kamogawa, Chiba, Japan (K.M.); Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan (K.F.)
| | - Toshiaki Makino
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, Japan (R.S., K.I., Y.T., T.M.); Center for Kampo Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan (T.Y., K.F., K.W.); Department of Japanese Oriental (Kampo) Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Japan (T.N.); Department of Japanese Traditional (Kampo) Medicine, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa-City, Ishikawa, Japan (K.O.-O.); Kampo Clinical Center, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan (K.O.-O.); Department of Oriental Medicine, Kameda Medical Center, 929 Higashi-cho, Kamogawa, Chiba, Japan (K.M.); Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan (K.F.)
| |
Collapse
|
3
|
Zhang Y, Yang J, Xie J. Torsade de Pointes Caused by a Compound Licorice Tablet. Int Heart J 2024; 65:770-774. [PMID: 39010227 DOI: 10.1536/ihj.23-609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The clinical manifestations of licorice-induced pseudoaldosteronism include muscle weakness, periodic paralysis, hypokalemia, and hypertension. Excessive licorice consumption can lead to adverse reactions affecting multiple systems, including the endocrine, cardiovascular, nervous, digestive, and immune systems. Although licorice is a frequently used Chinese herbal medicine, life-threatening adverse reactions have been reported among its users. This article presents a case of severe hypokalemia, torsade de pointes, severe hypertension, and exacerbation of manic symptoms resulting from an overdose of compound licorice tablets. This study aimed to enhance the understanding of the causes of hypokalemia and raise awareness on the potentially fatal adverse reactions associated with licorice drugs.
Collapse
Affiliation(s)
- Yichao Zhang
- Department of Cardiology, Affiliated Hospital of Hebei University
| | - Jing Yang
- Department of Cardiology, Affiliated Hospital of Hebei University
| | - Junmin Xie
- Department of Cardiology, Affiliated Hospital of Hebei University
| |
Collapse
|
4
|
Ng CYJ, Zhao Y, Wang N, Chia KL, Teo CH, Peh W, Yeo P, Zhong LLD. A multi-center cross-sectional study of Chinese Herbal Medicine-Drug adverse reactions using active surveillance in Singapore's Traditional Chinese Medicine clinics. Chin Med 2024; 19:44. [PMID: 38454483 PMCID: PMC10918936 DOI: 10.1186/s13020-024-00915-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND This study aimed to investigate the rates and causality of patient-reported adverse events (AEs) associated with concomitant Chinese Herbal Medicine (CHM) and Western Medicine prescription drug (WMPD) consumption through active surveillance in Singapore's Traditional Chinese Medicine (TCM) clinics. METHODS A cross-sectional study was conducted at five TCM clinics across Singapore from 8th May till 8th July 2023. Patients were screened to determine rates of CHM and WMPD consumption, and then interviewed if an AE was reported. An expert committee assessed the AE reports to determine causality. Along with descriptive statistics, odds ratios were calculated to determine AE occurrence likelihoods for patients who consumed both CHM and WMPD compared to CHM consumption alone. RESULTS 1028 patients were screened and 62.65% of them reported concurrent CHM-WMPD consumption. Patients who consumed CHM and WMPD were 3.65 times more likely to experience an AE as compared to CHM consumption alone. 18 AE reports were adjudicated, with most AEs deemed unlikely due to CHM consumption. CONCLUSIONS A large proportion of patients consumed CHM and WMPD concurrently, thus increasing their risk of experiencing AEs compared to those consuming CHM only. Active surveillance is applicable for detecting AEs, collecting data for causality assessment, and analysis.
Collapse
Affiliation(s)
- Chester Yan Jie Ng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Yan Zhao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Kwan Leung Chia
- Woodcroft Medical Centre, 1 Sir James Hardy Way, Woodcroft, SA, 5162, Australia
| | - Chun Huat Teo
- Singapore Thong Chai Medical Institution, 50 Chin Swee Road #01-01, Singapore, 169874, Singapore
| | - William Peh
- Operation and Medical Department, Singapore Chung Hwa Medical Institution, 640 Lorong 4 Toa Payoh, Singapore, 319522, Singapore
| | - Pansy Yeo
- Chong Hoe Healthcare, 144 Upper Bukit Timah Rd, #02-14, Singapore, 588177*, Singapore
| | - Linda L D Zhong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
5
|
Chen IS, Yasuda J, Notomi T, Nakamura TY. Licorice metabolite 18β-glycyrrhetinic acid activates G protein-gated inwardly rectifying K + channels. Br J Pharmacol 2024; 181:447-463. [PMID: 37642133 DOI: 10.1111/bph.16228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND AND PURPOSE Licorice (liquorice) is a common food additive and is used in Chinese medicine. Excess licorice intake can induce atrial fibrillation. Patients with atrial fibrillation possess constitutively activated G protein-gated inwardly rectifying K+ (GIRK) channels. Whether licorice affects GIRK channel activity is unknown. We aimed to clarify the effects of licorice ingredients on GIRK current and the mechanism of action. EXPERIMENTAL APPROACH A major component of licorice, glycyrrhizic acid (GA), and its metabolite, 18β-glycyrrhetinic acid (18β-GA), were tested. We performed electrophysiological recordings in Xenopus oocytes to examine the effects of GA and 18β-GA on various GIRK subunits (Kir 3.1-Kir 3.4), mutagenesis analyses to identify the crucial residues for drug action and motion analysis in cultured rat atrial myocytes to clarify effects of 18β-GA on atrial functions. KEY RESULTS GA inhibited Kir 3.1-containing channels, while 18β-GA activated all Kir 3.x subunits. A pore helix residue Phe137 in Kir 3.1 was critical for GA-mediated inhibition, and the corresponding Ser148 in Kir 3.2 was critical for 18β-GA-mediated activation. 18β-GA activated GIRK channel in a Gβγ -independent manner, whereas phosphatidylinositol 4,5-bisphosphate (PIP2 ) was essential for activation. Glu236 located at the cytoplasmic pore of Kir 3.2 appeared to be important to interactions with 18β-GA. In rat atrial myocytes, 18β-GA suppressed spontaneous beating via activation of GIRK channels. CONCLUSION AND IMPLICATIONS GA acts as a novel GIRK inhibitor, and 18β-GA acts as a novel GIRK activator. 18β-GA alters atrial function via activation of GIRK channels. This study elucidates the pharmacological activity of licorice ingredients and provides information for drug design.
Collapse
Affiliation(s)
- I-Shan Chen
- Department of Pharmacology, Faculty of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Jumpei Yasuda
- Department of Pharmacology, Faculty of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Takuya Notomi
- Department of Pharmacology, Faculty of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Tomoe Y Nakamura
- Department of Pharmacology, Faculty of Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
6
|
Uneda K, Kawai Y, Kaneko A, Kayo T, Akiba S, Ishigami T, Yoshida-Komiya H, Suzuki M, Mitsuma T. Analysis of clinical factors associated with Kampo formula-induced pseudoaldosteronism based on self-reported information from the Japanese Adverse Drug Event Report database. PLoS One 2024; 19:e0296450. [PMID: 38165850 PMCID: PMC10760746 DOI: 10.1371/journal.pone.0296450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/10/2023] [Indexed: 01/04/2024] Open
Abstract
Drug-induced pseudoaldosteronism is a typical adverse effect of Kampo formulas. Previous research described the potential risks of Kampo formula-linked pseudoaldosteronism. However, few studies assessed the risk factors using a real-world database and a data-mining approach. Using the Japanese Adverse Drug Event Report database, we extracted pseudoaldosteronism reports for 148 Kampo formulas covered by Japanese national health insurance. Adverse events were decided according to the preferred terminology of the Medical Dictionary for Regulatory Activities/Japanese version 25.1. We calculated reporting odds ratio (RORs) and identified Kampo formulas as suspected causes of pseudoaldosteronism. Moreover, we evaluated clinical factors associated with Kampo formula-induced pseudoaldosteronism via logistic regression. From April 2004 to November 2022, 6334 adverse events related to the Kampo formulas were reported. We selected 2471 reports containing complete clinical data, including 210 reports on pseudoaldosteronism. In the pseudoaldosteronism group, 69.0% of patients were female, and 85.2% were ≥70 years old. The formulas most commonly associated with pseudoaldosteronism were Shakuyakukanzoto, Yokukansan, and Ryokeijutsukanto (ROR [95% confidence interval {CI}] = 18.3 [13.0-25.9], 8.1 [5.4-12.0], and 5.5 [1.4-21.9], respectively). Logistic analysis identified female sex (odds ratio [OR] [95% CI] = 1.7 [1.2-2.6]; P = 0.006), older age (≥70, 5.0 [3.2-7.8]; P < 0.001), low body weight (<50 kg, 2.2 [1.5-3.2]; P < 0.001), diuretics usage (2.1 [1.3-4.8]; P = 0.004), hypertension (1.6 [1.1-2.4]; P = 0.014), and dementia (7.0 [4.2-11.6]; P < 0.001) as pseudoaldosteronism-related factors. Additionally, the daily Glycyrrhiza dose (OR = 2.1 [1.9-2.3]; P < 0.001) and duration of administration (>14 days, OR = 2.8 [1.7-4.5]; P < 0.001) were associated with adverse events. We did not observe an interaction between aging and hypertension. Careful follow-up is warranted during long-term Glycyrrhiza-containing Kampo formula use in patients with multiple clinical factors for pseudoaldosteronism.
Collapse
Affiliation(s)
- Kazushi Uneda
- Department of Kampo Medicine, Aizu Medical Center, Fukushima Medical University, Fukushima, Aizuwakamatsu, Japan
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuki Kawai
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akira Kaneko
- Department of Kampo Medicine, Aizu Medical Center, Fukushima Medical University, Fukushima, Aizuwakamatsu, Japan
| | - Takumi Kayo
- Department of Kampo Medicine, Aizu Medical Center, Fukushima Medical University, Fukushima, Aizuwakamatsu, Japan
| | - Shuichiro Akiba
- Department of Kampo Medicine, Aizu Medical Center, Fukushima Medical University, Fukushima, Aizuwakamatsu, Japan
| | - Tomoaki Ishigami
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | - Masao Suzuki
- Department of Kampo Medicine, Aizu Medical Center, Fukushima Medical University, Fukushima, Aizuwakamatsu, Japan
| | - Tadamichi Mitsuma
- Department of Kampo Medicine, Aizu Medical Center, Fukushima Medical University, Fukushima, Aizuwakamatsu, Japan
| |
Collapse
|
7
|
Pan BW, Zheng LL, Shi Y, Dong ZC, Feng TT, Yang J, Wei Y, Zhou Y. Synthesis and Antiviral and Antitumor Activities of Novel 18 β-Glycyrrhetinic Acid Derivatives. Int J Mol Sci 2023; 24:15012. [PMID: 37834459 PMCID: PMC10573640 DOI: 10.3390/ijms241915012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
A series of novel derivatives of 18β-glycyrrhetinic acid (GA) were synthesized by introducing aromatic or heterocyclic structures to extend the side chain, thereby enhancing their interaction with amino acid residues in the active pocket of the target protein. These compounds were structurally characterized using 1H NMR, 13C NMR, and HRMS. The compounds were subsequently evaluated for their inhibitory effects on HIV-1 protease and cell viability in the human cancer cell lines K562 and HeLa and the mouse cancer cell line CT26. Towards HIV-1 protease, compounds 28 and 32, which featured the introduction of heterocyclic moieties at the C3 position of GA, exhibited the highest inhibition, with inhibition rates of 76% and 70.5%, respectively, at 1 mg/mL concentration. Further molecular docking suggests that a 3-substituted polar moiety would be likely to enhance the inhibitory activity against HIV-1 protease. As for the anti-proliferative activities of the GA derivatives, incorporation of a thiazole heterocycle at the C3- position in compound 29 significantly enhanced the effect against K562 cells with an IC50 value of 8.86 ± 0.93 µM. The introduction of electron-withdrawing substituents on the C3-substituted phenyl ring augmented the anti-proliferative activity against Hela and CT26 cells. Compound 13 exhibited the highest inhibitory activity against Hela cells with an IC50 value of 9.89 ± 0.86 µM, whereas compound 7 exerted the strongest inhibition against CT26 cells with an IC50 value of 4.54 ± 0.37 µM. These findings suggest that further modification of GA is a promising path for developing potent novel anti-HIV and anticancer therapeutics.
Collapse
Affiliation(s)
- Bo-Wen Pan
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (B.-W.P.); (L.-L.Z.); (Y.S.); (Z.-C.D.); (T.-T.F.)
| | - Liang-Liang Zheng
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (B.-W.P.); (L.-L.Z.); (Y.S.); (Z.-C.D.); (T.-T.F.)
| | - Yang Shi
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (B.-W.P.); (L.-L.Z.); (Y.S.); (Z.-C.D.); (T.-T.F.)
| | - Zhang-Chao Dong
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (B.-W.P.); (L.-L.Z.); (Y.S.); (Z.-C.D.); (T.-T.F.)
| | - Ting-Ting Feng
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (B.-W.P.); (L.-L.Z.); (Y.S.); (Z.-C.D.); (T.-T.F.)
| | - Jian Yang
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Ying Wei
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (B.-W.P.); (L.-L.Z.); (Y.S.); (Z.-C.D.); (T.-T.F.)
| | - Ying Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (B.-W.P.); (L.-L.Z.); (Y.S.); (Z.-C.D.); (T.-T.F.)
| |
Collapse
|
8
|
Choi M, Lim C, Lee BK, Cho S. Amelioration of Brain Damage after Treatment with the Methanolic Extract of Glycyrrhizae Radix et Rhizoma in Mice. Pharmaceutics 2022; 14:pharmaceutics14122776. [PMID: 36559268 PMCID: PMC9781260 DOI: 10.3390/pharmaceutics14122776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/22/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Glycyrrhizae Radix et Rhizoma (GR) is a traditional herbal medicine widely used in Asian countries. GR was the most frequently used medicine among stroke patients in Donguibogam, the most representative book in Korean medicine. In the present study, we investigated the neuroprotective effects of the GR methanolic extract (GRex) on an ischemic stroke mice model. Ischemic stroke was induced by a 90 min transient middle cerebral artery occlusion (MCAO), and GRex was administered to mice with oral gavage after reperfusion of MCA blood flow. The MCAO-induced edema and infarction volume was measured, and behavioral changes were evaluated by a novel object recognition test (NORT). Immunofluorescence stains and Western blotting identified underlying mechanisms of the protective effects of GRex. GRex post-treatment in mice with MCAO showed potent effects in reducing cerebral edema and infarction at 125 mg/kg but no effects when the dosage was much lower or higher than 125 mg/kg. GRex inhibited the decrease of spontaneous motor activity and novel object recognition functions. The neuroprotective effects of GRex on ischemic stroke were due to its regulation of inflammation-related neuronal cells, such as microglia and astrocytes.
Collapse
Affiliation(s)
- Myeongjin Choi
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Chiyeon Lim
- Department of Medicine, College of Medicine, Dongguk University, Goyang 10326, Republic of Korea
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- Correspondence: (C.L.); (S.C.); Tel.: +82-31-961-5270 (C.L.); +82-51-510-8457 (S.C.)
| | - Boo-Kyun Lee
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Suin Cho
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Correspondence: (C.L.); (S.C.); Tel.: +82-31-961-5270 (C.L.); +82-51-510-8457 (S.C.)
| |
Collapse
|
9
|
Shang Z, Liu C, Qiao X, Ye M. Chemical analysis of the Chinese herbal medicine licorice (Gan-Cao): An update review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 299:115686. [PMID: 36067839 DOI: 10.1016/j.jep.2022.115686] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice, called Gan-Cao in China, is one of the most popular traditional herbal medicines. It is derived from the dried roots and rhizomes of Glycyrrhiza uralensis, G. glabra, and G. inflata. Licorice is recorded in the pharmacopoeias of China, Japan, US, and Europe. AIM This review updates research progress of licorice from the perspectives of chemical analysis, quality evaluation, drug metabolism, and pharmacokinetic studies from 2009 to April 2022. MATERIALS AND METHODS Both English and Chinese literatures were collected from databases including PubMed, Elsevier, Web of Science, and CNKI (Chinese). Licorice, extraction, structural characterization/identification, quality control, metabolism, and pharmacokinetics were used as keywords. RESULTS Newly developed analytical methods, including LC/UV, 2DLC, LC/MS, GC/MS, and mass spectrometry imaging (MSI) for chemical analysis of licorice were summarized. CONCLUSION This review provides a comprehensive summary on chemical analysis of licorice.
Collapse
Affiliation(s)
- Zhanpeng Shang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Chenrui Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China; Yunnan Baiyao International Medical Research Center, Peking University, 38 Xueyuan Road, Beijing, 100191, China.
| |
Collapse
|
10
|
Ni Q, Gao Y, Yang X, Zhang Q, Guo B, Han J, Chen S. Analysis of the network pharmacology and the structure-activity relationship of glycyrrhizic acid and glycyrrhetinic acid. Front Pharmacol 2022; 13:1001018. [PMID: 36313350 PMCID: PMC9606671 DOI: 10.3389/fphar.2022.1001018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Licorice, a herbal product derived from the root of Glycyrrhiza species, has been used as a sweetening agent and traditional herbal medicine for hundreds of years. Glycyrrhizic acid (GL) and glycyrrhetinic acid (GA) are the most important active ingredients in licorice. Both GL and GA have pharmacological effects against tumors, inflammation, viral infection, liver diseases, neurological diseases, and metabolic diseases. However, they also exhibit differences. KEGG analysis indicated that licorice is involved in neuroactive ligand‒receptor interactions, while 18β-GA is mostly involved in arrhythmogenic right ventricular cardiomyopathy. In this article, we comprehensively review the therapeutic potential of GL and GA by focusing on their pharmacological effects and working mechanisms. We systemically examine the structure-activity relationship of GL, GA and their isomers. Based on the various pharmacological activities of GL, GA and their isomers, we propose further development of structural derivatives of GA after chemical structure modification, with less cytotoxicity but higher targeting specificity. More research is needed on the clinical applications of licorice and its active ingredients.
Collapse
Affiliation(s)
- Qingqiang Ni
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affifiliated to Shandong First Medical University, Jinan, Shandong, China
- Postdoctoral Mobile Station, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yuxuan Gao
- Postdoctoral Mobile Station, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiuzhen Yang
- Department of Basic Research, Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Qingmeng Zhang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Baojian Guo
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, Guangdong, China
| | - Jinxiang Han
- Biomedical Sciences College and Shandong Medicinal Biotechnology Centre, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- *Correspondence: Jinxiang Han, ; Shaoru Chen,
| | - Shaoru Chen
- Department of Basic Research, Guangzhou Laboratory, Guangzhou, Guangdong, China
- *Correspondence: Jinxiang Han, ; Shaoru Chen,
| |
Collapse
|
11
|
Li C, Jia WW, Yang JL, Cheng C, Olaleye OE. Multi-compound and drug-combination pharmacokinetic research on Chinese herbal medicines. Acta Pharmacol Sin 2022; 43:3080-3095. [PMID: 36114271 PMCID: PMC9483253 DOI: 10.1038/s41401-022-00983-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022]
Abstract
Traditional medicine has provided a basis for health care and disease treatment to Chinese people for millennia, and herbal medicines are regulated as drug products in China. Chinese herbal medicines have two features. They normally possess very complex chemical composition. This makes the identification of the constituents that are together responsible for the therapeutic action of an herbal medicine challenging, because how to select compounds from an herbal medicine for pharmacodynamic study has been a big hurdle in such identification efforts. To this end, a multi-compound pharmacokinetic approach was established to identify potentially important compounds (bioavailable at the action loci with significant exposure levels after dosing an herbal medicine) and to characterize their pharmacokinetics and disposition. Another feature of Chinese herbal medicines is their typical use as or in combination therapies. Coadministration of complex natural products and conventional synthetic drugs is prevalent worldwide, even though it remains very controversial. Natural product–drug interactions have raised wide concerns about reduced drug efficacy or safety. However, growing evidence shows that incorporating Chinese herbal medicines into synthetic drug-based therapies delivers benefits in the treatment of many multifactorial diseases. To address this issue, a drug-combination pharmacokinetic approach was established to assess drug–drug interaction potential of herbal medicines and degree of pharmacokinetic compatibility for multi-herb combination and herbal medicine–synthetic drug combination therapies. In this review we describe the methodology, techniques, requirements, and applications of multi-compound and drug-combination pharmacokinetic research on Chinese herbal medicines and to discuss further development for these two types of pharmacokinetic research.
Collapse
|
12
|
Ishida T, Jobu K, Kawada K, Morisawa S, Kawazoe T, Shiraishi H, Fujita H, Nishimura S, Kanno H, Nishiyama M, Ogawa K, Morita Y, Hanazaki K, Miyamura M. Impact of Gut Microbiota on the Pharmacokinetics of Glycyrrhizic Acid in Yokukansan, a Kampo Medicine. Biol Pharm Bull 2022; 45:104-113. [PMID: 34980772 DOI: 10.1248/bpb.b21-00658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Individual differences in gut microbiota can affect the pharmacokinetics of drugs. Yokukansan is a traditional Japanese kampo medicine used to treat peripheral symptoms of dementia and delirium. A study examining the pharmacokinetics of the components of yokukansan reported large individual differences in the pharmacokinetics of glycyrrhizic acid (GL). It is known that GL is metabolized by intestinal bacteria to glycyrrhetinic acid (GA), which is absorbed in the gastrointestinal tract. Thus, the gut microbiota may affect GL pharmacokinetics. We aimed to clarify the relationship between the gut microbiota composition and pharmacokinetics of GL in yokukansan. Mice were orally administered yokukansan, following the administration of various antibiotics, and the plasma concentration of GA and composition of gut microbiota were measured. The GA plasma concentration was low in mice treated with amoxicillin and vancomycin. The composition of gut microbiota revealed a different pattern from that of the control group. Mice with low plasma levels of GA had lower levels of the phylum Bacteroides and Firmicutes. Additionally, bacteria, such as those belonging to the genera Parabaceroides, Bacteroides, Ruminococcus and an unknown genus in families Lachnospiraceae and Ruminococcaceae, exerted positive correlations between the gene copies and plasma GA levels. These bacteria may contribute to the absorption of GA in the gastrointestinal tract, and multiple bacteria may be involved in GL pharmacokinetics. The pharmacokinetics of GL may be predicted by evaluating the composition of gut bacteria, rather than by evaluating the amount of a single bacterium.
Collapse
Affiliation(s)
| | - Kohei Jobu
- Department of Pharmacy, Kochi Medical School Hospital
| | - Kei Kawada
- Department of Pharmacy, Kochi Medical School Hospital.,Graduate school of Integrated Arts and Sciences, Kochi University
| | - Shumpei Morisawa
- Department of Pharmacy, Kochi Medical School Hospital.,Graduate school of Integrated Arts and Sciences, Kochi University
| | - Tetsushi Kawazoe
- Department of Pharmacy, Kochi Medical School Hospital.,Graduate school of Integrated Arts and Sciences, Kochi University
| | | | - Hiroko Fujita
- Department of Pharmacy, Kochi Medical School Hospital
| | | | - Hitomi Kanno
- Tsumura Advanced Technology Research Laboratories, Tsumura & Co
| | | | - Kazuo Ogawa
- Tsumura Advanced Technology Research Laboratories, Tsumura & Co
| | - Yasuyo Morita
- Department of Pharmacy, Kochi Medical School Hospital
| | | | - Mitsuhiko Miyamura
- Department of Pharmacy, Kochi Medical School Hospital.,Graduate school of Integrated Arts and Sciences, Kochi University
| |
Collapse
|
13
|
Abstract
This review summarizes the adverse effects of Kampo medicines. These adverse effects in terms of immunoallergic reactions include interstitial pneumonia, liver injury, allergic cystitis, and drug eruption. Many cases of interstitial pneumonia, liver injury, and allergic cystitis associated with Kampo formulas have been reported to be caused by formulas containing Scutellariae Radix (Scutellaria root, ogon). The known adverse effects linked to overdose of Kampo formulas include pseudoaldosteronism [caused by Glycyrrhizae Radix (licorice, kanzo)], sympathomimetic symptoms [caused by Ephedrae Herba (ephedra, mao)], aconite poisoning [caused by Aconiti Tuber (processed aconite root, bushi and uzu)], and diarrhea [caused by Rhei Rhizoma (rhubarb, daio)]. In recent years, mesenteric phlebosclerosis caused by the long-term administration of Gardeniae Fructus (gardenia fruit, sanshishi) has also been reported. It is necessary to consider these potential adverse effects when prescribing Kampo medicines in clinical practice.
Collapse
Affiliation(s)
- Yutaka Shimada
- Department of Japanese Oriental Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| |
Collapse
|
14
|
Zhang Q, Wang Y, Wang Z, Mohammed EAH, Zhao Q, He D, Wang Z. Synthesis and anti-inflammatory activities of glycyrrhetinic acid derivatives containing disulfide bond. Bioorg Chem 2021; 119:105542. [PMID: 34902645 DOI: 10.1016/j.bioorg.2021.105542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 11/28/2021] [Accepted: 12/02/2021] [Indexed: 11/02/2022]
Abstract
A series of glycyrrhetinic acid (GA, aglycone of glycyrrhizic acid) derivatives containing disulfide bond were synthesized and their anti-inflammatory and anti-fibrosis activities were evaluated in vivo and in vitro. Among them, compound 7 displayed the highest toxicity to all the tested cell lines including macrophages. Compounds 3 and 4 showed higher activities than GA in the cell and animal model. In the anti-inflammatory tests, compounds 3 and 4 down-regulated the expressions of several inflammatory factors, such as HMGB1, TLR4, IL-1β, TNF-α and TGF-β1 in LPS-treated RAW264.7 cells in a dose-dependent manner. Compounds 3 and 4 at 30 µM respectively reduced the levels of HMGB1 in the LPS group to 42.7% and 38.2%. In addition, the level of TLR4 decreased to close to that of control group when treated by compound 4 at the concentration of 30 µM. In the process of anti-fibrosis tests using TGF-β1-induced A549 cell line as the model, compounds 3 and 4 also decreased the expression levels of Col1 and α-SMA in a dose-dependent manner. Compound 3 and 4 at 30 µM respectively reduced the expression of α-SMA level by 2.2-fold and 2.6-fold compared to the TGF-β1-treated control group. Moreover, they influenced the ROS level and mitochondrial membrane potential (MMP) in A549 cells. In the paraquat-induced pulmonary fibrosis mice model, the symptoms of inflammation and fibrosis of mice were alleviated after administration of compound 3 or 4. The above results suggest that compounds 3 and 4 may be promising candidates for inflammation and lung fibrosis treatment.
Collapse
Affiliation(s)
- Qiuping Zhang
- Materia Medica Development Group, Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Yanni Wang
- Materia Medica Development Group, Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Zongyuan Wang
- Materia Medica Development Group, Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Eyad Abdulwhab Hamoud Mohammed
- Materia Medica Development Group, Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Quanyi Zhao
- Materia Medica Development Group, Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China.
| | - Dian He
- Materia Medica Development Group, Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China.
| | - Zhen Wang
- Materia Medica Development Group, Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
15
|
Lan XF, Olaleye OE, Lu JL, Yang W, Du FF, Yang JL, Cheng C, Shi YH, Wang FQ, Zeng XS, Tian NN, Liao PW, Yu X, Xu F, Li YF, Wang HT, Zhang NX, Jia WW, Li C. Pharmacokinetics-based identification of pseudoaldosterogenic compounds originating from Glycyrrhiza uralensis roots (Gancao) after dosing LianhuaQingwen capsule. Acta Pharmacol Sin 2021; 42:2155-2172. [PMID: 33931765 PMCID: PMC8086230 DOI: 10.1038/s41401-021-00651-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/12/2021] [Indexed: 02/03/2023]
Abstract
LianhuaQingwen capsule, prepared from an herbal combination, is officially recommended as treatment for COVID-19 in China. Of the serial pharmacokinetic investigations we designed to facilitate identifying LianhuaQingwen compounds that are likely to be therapeutically important, the current investigation focused on the component Glycyrrhiza uralensis roots (Gancao). Besides its function in COVID-19 treatment, Gancao is able to induce pseudoaldosteronism by inhibiting renal 11β-HSD2. Systemic and colon-luminal exposure to Gancao compounds were characterized in volunteers receiving LianhuaQingwen and by in vitro metabolism studies. Access of Gancao compounds to 11β-HSD2 was characterized using human/rat, in vitro transport, and plasma protein binding studies, while 11β-HSD2 inhibition was assessed using human kidney microsomes. LianhuaQingwen contained a total of 41 Gancao constituents (0.01-8.56 μmol/day). Although glycyrrhizin (1), licorice saponin G2 (2), and liquiritin/liquiritin apioside (21/22) were the major Gancao constituents in LianhuaQingwen, their poor intestinal absorption and access to colonic microbiota resulted in significant levels of their respective deglycosylated metabolites glycyrrhetic acid (8), 24-hydroxyglycyrrhetic acid (M2D; a new Gancao metabolite), and liquiritigenin (27) in human plasma and feces after dosing. These circulating metabolites were glucuronized/sulfated in the liver and then excreted into bile. Hepatic oxidation of 8 also yielded M2D. Circulating 8 and M2D, having good membrane permeability, could access (via passive tubular reabsorption) and inhibit renal 11β-HSD2. Collectively, 1 and 2 were metabolically activated to the pseudoaldosterogenic compounds 8 and M2D. This investigation, together with such investigations of other components, has implications for precisely defining therapeutic benefit of LianhuaQingwen and conditions for its safe use.
Collapse
Affiliation(s)
- Xiao-Fang Lan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Olajide E Olaleye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jun-Lan Lu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wei Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Fei-Fei Du
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jun-Ling Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chen Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yan-Hong Shi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Feng-Qing Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xue-Shan Zeng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Nan-Nan Tian
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Pei-Wei Liao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xuan Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Fang Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ying-Fei Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hong-Tao Wang
- Hebei Yiling Chinese Medicine Research Institute, Shijiazhuang, 050035, China
| | - Nai-Xia Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wei-Wei Jia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Chuan Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
16
|
Morris DJ, Brem AS, Odermatt A. Modulation of 11β-hydroxysteroid dehydrogenase functions by the cloud of endogenous metabolites in a local microenvironment: The glycyrrhetinic acid-like factor (GALF) hypothesis. J Steroid Biochem Mol Biol 2021; 214:105988. [PMID: 34464733 DOI: 10.1016/j.jsbmb.2021.105988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/08/2021] [Accepted: 08/25/2021] [Indexed: 01/09/2023]
Abstract
11β-Hydroxysteroid dehydrogenase (11β-HSD)-dependent conversion of cortisol to cortisone and corticosterone to 11-dehydrocorticosterone are essential in regulating transcriptional activities of mineralocorticoid receptors (MR) and glucocorticoid receptors (GR). Inhibition of 11β-HSD by glycyrrhetinic acid metabolites, bioactive components of licorice, causes sodium retention and potassium loss, with hypertension characterized by low renin and aldosterone. Essential hypertension is a major disease, mostly with unknown underlying mechanisms. Here, we discuss a putative mechanism for essential hypertension, the concept that endogenous steroidal compounds acting as glycyrrhetinic acid-like factors (GALFs) inhibit 11β-HSD dehydrogenase, and allow for glucocorticoid-induced MR and GR activation with resulting hypertension. Initially, several metabolites of adrenally produced glucocorticoids and mineralocorticoids were shown to be potent 11β-HSD inhibitors. Such GALFs include modifications in the A-ring and/or at positions 3, 7 and 21 of the steroid backbone. These metabolites may be formed in peripheral tissues or by gut microbiota. More recently, metabolites of 11β-hydroxy-Δ4androstene-3,17-dione and 7-oxygenated oxysterols have been identified as potent 11β-HSD inhibitors. In a living system, 11β-HSD isoforms are not exposed to a single substrate but to several substrates, cofactors, and various inhibitors simultaneously, all at different concentrations depending on physical state, tissue and cell type. We propose that this "cloud" of steroids and steroid-like substances in the microenvironment determines the 11β-HSD-dependent control of MR and GR activity. A dysregulated composition of this cloud of metabolites in the respective microenvironment needs to be taken into account when investigating disease mechanisms, for forms of low renin, low aldosterone hypertension.
Collapse
Affiliation(s)
- David J Morris
- Department of Pathology and Laboratory Medicine, The Miriam Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA.
| | - Andrew S Brem
- Division of Kidney Diseases and Hypertension, Warren Alpert Medical School of Brown University, Providence, RI, USA.
| | - Alex Odermatt
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
17
|
Yoshino T, Shimada S, Homma M, Makino T, Mimura M, Watanabe K. Clinical Risk Factors of Licorice-Induced Pseudoaldosteronism Based on Glycyrrhizin-Metabolite Concentrations: A Narrative Review. Front Nutr 2021; 8:719197. [PMID: 34604277 PMCID: PMC8484325 DOI: 10.3389/fnut.2021.719197] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022] Open
Abstract
Licorice, the dried root or stolon of Glycyrrhiza glabra or G. ularensis, is commonly used worldwide as a food sweetener or crude drug. Its major ingredient is glycyrrhizin. Hypokalemia or pseudoaldosteronism (PsA) is one of the most frequent side effects of licorice intake. Glycyrrhizin metabolites inhibit type 2 11β-hydroxysteroid dehydrogenase (11βHSD2), which decomposes cortisol into inactive cortisone in the distal nephron, thereby inducing mineralocorticoid receptor activity. Among the several reported glycyrrhizin-metabolites, 18β-glycyrrhetyl-3-O-sulfate is the major compound found in humans after licorice consumption, followed by glycyrrhetinic acid. These metabolites are highly bound to albumin in blood circulation and are predominantly excreted into bile via multidrug resistance-associated protein 2 (Mrp2). High dosage and long-term use of licorice are constitutional risk factors for PsA. Orally administered glycyrrhizin is effectively hydrolyzed to glycyrrhetinic acid by the intestinal bacteria in constipated patients, which enhances the bioavailability of glycyrrhizin metabolites. Under hypoalbuminemic conditions, the unbound metabolite fractions can reach 11βHSD2 at the distal nephron. Hyper direct-bilirubin could be a surrogate marker of Mrp2 dysfunction, which results in metabolite accumulation. Older age is associated with reduced 11βHSD2 function, and several concomitant medications, such as diuretics, have been reported to affect the phenotype. This review summarizes several factors related to licorice-induced PsA, including daily dosage, long-term use, constipation, hypoalbuminemia, hyper direct-bilirubin, older age, and concomitant medications.
Collapse
Affiliation(s)
- Tetsuhiro Yoshino
- Center for Kampo Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Saori Shimada
- Department of Pharmaceutical Sciences, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masato Homma
- Department of Pharmaceutical Sciences, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Toshiaki Makino
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Masaru Mimura
- Center for Kampo Medicine, Keio University School of Medicine, Tokyo, Japan.,Department of Psychiatry and Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Watanabe
- Center for Kampo Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Kawashima N. Kambakutaisoto Treatment for Children With Night Crying and Arousal Parasomnias Developed During Prolonged Hospitalization for Hematological and Oncological Diseases. J Child Neurol 2021; 36:568-574. [PMID: 33432853 DOI: 10.1177/0883073820984062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The lack of an established treatment standard prompted an examination of whether kambakutaisoto, an herbal formula, is effective for non-rapid eye movement (NREM)-related parasomnias and night crying (provisionally defined as an infantile form of arousal parasomnia). METHODS This study included 137 children aged median 4.1 years (range, 0.02-18.5) who were admitted for hematological and oncological diseases. RESULTS Of 137, 3 children developed recurrent episodes of NREM-related parasomnias, and 3 developed night crying. The proportion of children with night-crying/parasomnia receiving invasive procedures was significantly higher than those without (100% vs. 47%, P = .013). All 6 children with night crying/parasomnia received kambakutaisoto at a dose of 0.13-0.22 g/kg per os and responded from the start of administration with a significant reduction in the number of episodes. No adverse effects were observed. CONCLUSION Kambakutaisoto may be a safe and promising therapy for night crying and NREM-related parasomnias in children.
Collapse
Affiliation(s)
- Nozomu Kawashima
- Department of Pediatrics, 36589Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
19
|
Ishiuchi K, Morinaga O, Yoshino T, Mitamura M, Hirasawa A, Maki Y, Tashita Y, Kondo T, Ogawa K, Lian F, Ogawa-Ochiai K, Minamizawa K, Namiki T, Mimura M, Watanabe K, Makino T. Identification of an Alternative Glycyrrhizin Metabolite Causing Liquorice-Induced Pseudohyperaldosteronism and the Development of ELISA System to Detect the Predictive Biomarker. Front Pharmacol 2021; 12:688508. [PMID: 34079468 PMCID: PMC8165744 DOI: 10.3389/fphar.2021.688508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
Liquorice is usually used as crude drug in traditional Japanese Kampo medicine and traditional Chinese medicine. Liquorice-containing glycyrrhizin (GL) can cause pseudohyperaldosteronism as a side effect. Previously, we identified 18β-glycyrrhetyl-3-O-sulfate (3) as a GL metabolite in Eisai hyperbilirubinuria rats (EHBRs) with the dysfunction of multidrug resistance-related protein (Mrp2). We speculated that 3 was associated with the onset of liquorice-induced pseudohyperaldosteronism, because it was mainly detected in serum of patients with suspected to have this condition. However, it is predicted that other metabolites might exist in the urine of EHBRs orally treated with glycyrrhetinic acid (GA). We explored other metabolites in the urine of EHBRs, and investigated the pharmacokinetic profiles of the new metabolite in EHBRs and normal Sprague-Dawley rats. We further analyzed the serum concentrations of the new metabolite in the patients of pseudohyperaldosteronism. Finally, we developed the analyzing method of these metabolites as a preventive biomarker for the onset of pseudohyperaldosteronism using an enzyme-linked immunosorbent assay (ELISA). We isolated a new GL metabolite, 18β-glycyrrhetyl-3-O-sulfate-30-O-glucuronide (4). Compound 4 significantly inhibited rat type-2 11β-hydroxysteroid dehydrogenase (11β-HSD2) and was a substrate of both organic anion transporter (OAT) 1 and OAT3. Compound 4 was also detected in the serum of patients with suspected pseudohyperaldosteronism at an approximately 10-fold lower concentrations than 3, and these concentrations were positively correlated. Compound 4 showed a lower serum concentration and weaker inhibitory titer on 11β-HSD2 than 3. We developed an enzyme-linked immunosorbent assay system using an anti-18β-glycyrrhetyl-3-O-glucuronide (3MGA) monoclonal antibody to measure the serum concentration of 3 to facilitate the measurement of biomarkers to predict the onset of pseudohyperaldosteronism. Although we found 4 as the secondary candidate causative agent, 3 could be the main potent preventive biomarker of liquorice-induced pseudohyperaldosteronism. Compound 3 was detected in serum at a higher concentration than GA and 4, implying that 3 may be a pharmacologically active ingredient mediating not only the development of pseudohyperaldosteronism but anti-inflammatory effects in humans administered GL or other liquorice-containing preparations.
Collapse
Affiliation(s)
- Kan'ichiro Ishiuchi
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Osamu Morinaga
- Department of Natural Medicines, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Tetsuhiro Yoshino
- Center for Kampo Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Miaki Mitamura
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Asuka Hirasawa
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yasuhito Maki
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yuuna Tashita
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Tsubasa Kondo
- Department of Natural Medicines, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Kakuyou Ogawa
- Department of Natural Medicines, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Fangyi Lian
- Center for Kampo Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Keiko Ogawa-Ochiai
- Department of Otorhinolaryngology and Head and Neck Surgery, Clinic of Japanese Oriental (Kampo) Medicine, Kanazawa University Hospital, Kanazawa, Japan
| | | | - Takao Namiki
- Department of Japanese Oriental (Kampo) Medicine, Graduate School of Medicine, Chiba University, Chuo-ku, Japan
| | - Masaru Mimura
- Center for Kampo Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Watanabe
- Center for Kampo Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Toshiaki Makino
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan,*Correspondence: Toshiaki Makino,
| |
Collapse
|
20
|
Yu HH, Qiu YX, Li B, Peng CY, Zeng R, Wang W. Kadsura heteroclita stem ethanol extract protects against carbon tetrachloride-induced liver injury in mice via suppression of oxidative stress, inflammation, and apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113496. [PMID: 33091494 DOI: 10.1016/j.jep.2020.113496] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kadsura heteroclita stem (KHS) is a well-known hepatoprotective Tujia ethnomedicine (folk named Xuetong), has long been used for the prevention and treatment of hepatitis and liver diseases. AIM OF THE STUDY To explore the protective effects of KHS against carbon tetrachloride (CCl4)-induced liver injury and the underlying mechanism, particularly antioxidative, anti-inflammatory, and anti-apoptotic potentials. MATERIALS AND METHODS The acute toxicity of KHS was measured by the method of maximum tolerated dose (MTD). Liver injury in mice was induced by intraperitoneal injection of 25% carbon tetrachloride (olive oil solubilization) 2 times every week. After modeling, mice in KHS groups were treated with KHS at 100, 200, 400 mg/kg/d, mice in positive control group were treated with bifendate (30 mg/kg/d), and mice in normal and model groups were given ultrapure water. After 4 weeks of treatment, blood of mice was taken from the orbital venous plexus before mice euthanized, the liver, spleen, and thymus of mice were weighed by dissecting the abdominal cavity after mice euthanized. Moreover, the liver of mice was selected for histological examination. The alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities in mice serum were measured using the automatic biochemical analyzer. The levels of superoxide dismutase (SOD), myeloperoxidase (MPO), malondialdehyde (MDA), glutathione peroxidase (GPX-2), tumor necrosis factor (TNF-α), interleukin-6 (IL-6), interleukin-10 (IL-10), Bcl-2-associated X (Bax), B-cell lymphoma-2 (Bcl-2), Caspase-3, and Caspase-8 in mice liver were measured by Elisa kits. Furthermore, the protein expression of Bcl-2 and Bax in mice liver tissue was detected by Western blot. RESULTS The MTD of KHS was determined to be 26 g/kg in both sexes of mice. Treatment with KHS dose-dependently protected the liver and other main organs against CCl4-induced liver injury in mice. The ALT and AST levels in mice liver were significantly reduced after treatment with KHS at the dose of 100, 200, and 400 mg/kg. In addition, the liver histopathological analyses revealed that KHS markedly alleviated inflammatory cell infiltration, hepatic fibrosis, hepatocyte ballooning, necrosis and severe apoptosis of hepatocytes induced by CCl4. Further assay indicated that KHS significantly suppressed the production of MDA and MPO, while markedly increased the level of SOD and GPx-2. The TNF-α and IL-6 level in mice liver tissue were decreased by KHS, whereas the IL-10 level was increased. KHS also inhibited hepatocyte apoptosis by significantly reducing the expression of Bax, Caspase-3, Caspase-8, as well as increasing the expression of Bcl-2. Besides, the Western blot results strongly demonstrated that KHS inhibited hepatocyte apoptosis, as evidenced by reducing the expression of Bax protein and increasing the expression of Bcl-2 protein in liver injury tissues. CONCLUSIONS This research firstly clarified that KHS has a significant protective effect against CCl4-induced liver injury, which might be closely related to alleviating oxidative stress, reducing inflammatory response, and inhibiting hepatocyte apoptosis.
Collapse
Affiliation(s)
- Huang-He Yu
- TCM and Ethnomedicine Innovation & Development International Laboratory, And Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Yi-Xing Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, And Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, And Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Cai-Yun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, And Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Rong Zeng
- TCM and Ethnomedicine Innovation & Development International Laboratory, And Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, And Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| |
Collapse
|
21
|
Makino T. Exploration for the real causative agents of licorice-induced pseudoaldosteronism. J Nat Med 2021; 75:275-283. [PMID: 33481180 PMCID: PMC7902566 DOI: 10.1007/s11418-021-01484-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/06/2020] [Indexed: 01/24/2023]
Abstract
I investigated the causative agents of licorice-induced pseudoaldosteronism, which is a frequent side effect of Japanese traditional Kampo medicines. Glycyrrhizin (GL), the main ingredient of licorice, is absorbed after being metabolized to glycyrrhetinic acid (GA) by intestinal bacteria, and then metabolized in liver to 3-monoglucuronyl-glycyrrhetinic acid (3MGA). In normal condition, 3MGA is excreted into bile via a multidrug resistance-related protein (Mrp) 2, therefore, 3MGA does not appear in blood circulation. However, under the dysfunction of Mrp2, 3MGA appears in the blood circulation and is excreted into the urine by not glomerular filtration but tubular secretion via organic anion transporter (OAT) 1 and 3. At this time, 3MGA inhibits type 2 11β-hydroxysteroid dehydrogenase (11βHSD2) in tubular cells to cause pseudoaldosteronism. Since GA is not the substrates of these transporters, GA cannot inhibit 11βHSD2 in tubular cells. Therefore, it was considered that 3MGA was the causative agents of licorice-induced pseudoaldosteronism. After that, I isolated and identified three other GL metabolites, 22α-hydroxy-18β-glycyrrhetyl-3-O-sulfate-30-glucuronide (1), 22α-hydroxy-18β-glycyrrhetyl-3-O-sulfate (2), and 18β-glycyrrhetyl-3-O-sulfate (3) from the urine of Mrp2-deficient rats orally treated with GA, and found that their blood and urinary concentrations were much higher than 3MGA and that their pharmacokinetic behaviors were similar to 3MGA. 3MGA was not detected in the blood of patients with pseudoaldosteronism who developed rhabdomyolysis due to licorice, and compound 3 was detected at a high concentration. In addition, a multicenter retrospective study was conducted using the serum and urine of 97 patients who took Kampo medicines containing licorice. Of a total of 97 patients, 67 detected GA in the serum (median 122 nM, 5 nM-1.8 µM) and 68 detected compound 3 (median 239 nM, 2 nM-4.2 µM), and there were no cases of detection of GL, 3MGA, compounds 1, and 2. High blood concentrations of compound 3 were associated with low plasma renin activity, plasma aldosterone levels, and serum potassium levels. It is highly probable that compound 3 is the true causative agent of pseudoaldosteronism.
Collapse
Affiliation(s)
- Toshiaki Makino
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.
| |
Collapse
|
22
|
|
23
|
Shen P, Zhang J, Zhu Y, Wang W, Yu B, Wang W. Microbial transformation of glycyrrhetinic acid derivatives by Bacillus subtilis ATCC 6633 and Bacillus megaterium CGMCC 1.1741. Bioorg Med Chem 2020; 28:115465. [DOI: 10.1016/j.bmc.2020.115465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/18/2020] [Accepted: 03/22/2020] [Indexed: 02/06/2023]
|