1
|
Ackermann G, Peil M, Quarz C, Schmidt A, Halaczkiewicz M, Thomas AD, Stegmüller S, Richling E, Manolikakes G, Christmann M, Küpper JH, Schrenk D, Fahrer J. Molecular dosimetry of estragole and 1'-hydroxyestragole-induced DNA adduct formation, clastogenicity and cytotoxicity in human liver cell models. Arch Toxicol 2025:10.1007/s00204-025-04084-2. [PMID: 40397106 DOI: 10.1007/s00204-025-04084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 05/07/2025] [Indexed: 05/22/2025]
Abstract
The phenylpropene estragole (ES) is found in essential oils of herbs and spices, such as bitter fennel and basil. Humans are exposed to ES through the diet and phytomedicines. After its absorption, ES undergoes metabolic activation by CYP1A2 and SULT1A1 in the liver, which can give rise to DNA adducts and hepatocarcinogenesis. Until now, quantitative genotoxicity data for ES in human liver cells are scarce, correlating DNA adduct levels with critical effects such as clastogenicity. Here, we used human HepG2 and HepG2-CYP1A2 cells as well as primary human hepatocytes (PHH) to study the genotoxic, clastogenic and cytotoxic potential of ES and its crucial metabolite 1'-hydroxyestragole (1'OH-ES). In addition, primary rat hepatocytes (PRH) were used for selected endpoints. Treatment of HepG2-CYP1A2 cells with ES (0-2 mM) led to the concentration-dependent formation of E3'-N2-dG adducts. Apart from a moderate γH2AX induction, neither p53 accumulation nor cytotoxicity was observed. However, clastogenicity was demonstrated at ES concentrations ≥ 1 mM. Incubation of HepG2 cells with 1'OH-ES (0-35 µM) led to 10-50-fold higher E3'-N2-dG adduct levels compared to equimolar ES concentrations. Furthermore, 1'OH-ES caused γH2AX formation, p53 accumulation and cytotoxicity, which was confirmed in PHH. In agreement, 1'OH-ES induced clastogenicity at concentrations ≥ 25 µM. Molecular dosimetry revealed that a certain E3'-N2-dG adduct level is required to trigger clastogenicity and cytotoxicity. This was confirmed by Benchmark Concentration (BMC) modelling, showing that the BMC for clastogenicity is 12-17-fold higher than the respective BMC for DNA adduct formation. Our data indicate that a threshold level of DNA adducts is required, both in rat and human liver cells, to trigger markers of clastogenicity. These levels are unlikely to be reached in humans following chronic ES exposure through phytomedicines or the diet.
Collapse
Affiliation(s)
- G Ackermann
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 52, 67663, Kaiserslautern, Germany
| | - M Peil
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 52, 67663, Kaiserslautern, Germany
| | - C Quarz
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 52, 67663, Kaiserslautern, Germany
| | - A Schmidt
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, 55131, Mainz, Germany
| | - M Halaczkiewicz
- Division of Organic Chemistry, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 54, Kaiserslautern, Germany
| | - A D Thomas
- School of Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK
| | - S Stegmüller
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 52, 67663, Kaiserslautern, Germany
| | - E Richling
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 52, 67663, Kaiserslautern, Germany
| | - G Manolikakes
- Division of Organic Chemistry, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 54, Kaiserslautern, Germany
| | - M Christmann
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, 55131, Mainz, Germany
| | - J H Küpper
- Division of Molecular Cell Biology, Faculty of Environment and Nature Science, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968, Senftenberg, Germany
| | - D Schrenk
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 52, 67663, Kaiserslautern, Germany
| | - J Fahrer
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 52, 67663, Kaiserslautern, Germany.
| |
Collapse
|
2
|
Jeong YER, Kung RW, Bykowski J, Deak TK, Wetmore SD. Effect of Guanine Adduct Size, Shape, and Linker Type on the Conformation of Adducted DNA: A DFT and Molecular Dynamics Study. J Phys Chem B 2023; 127:9035-9049. [PMID: 37831812 DOI: 10.1021/acs.jpcb.3c04864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
DNA is damaged through various exogenous sources (e.g., automobile exhaust, tobacco smoke, and processed foods), which can yield diverse C8-dG bulky aryl adducts. Adducts are known to induce structural changes to DNA that can lead to various biological outcomes, ranging from cell death to diseases such as cancer. Unfortunately, the relationship between the chemical composition of the damaged product, the adducted DNA structure, and the biological consequences is not well understood, which limits the development of disease detection and prevention strategies. The present study uses density functional theory (DFT) calculations and quintuplicate 1 μs molecular dynamics (MD) simulations to characterize the structure of DNA containing 21 model C8-dG adducts that systematically differ in size (phenyl to pyrenyl), shape (α (2,3), β (3,4) fusion, or ring substitution), and nucleobase-aryl group linkage (N, O, and C-linked). DFT calculations reveal that the inherent structural features of the G nucleobase adducts are impacted by linker type and bulky moiety shape, but not size, with the conformational flexibility reducing with α-ring fusion and linker composition as N > O > C. These structural properties are maintained in nucleoside models, which also reveal an increased propensity for anti-to-syn rotation about the glycosidic bond with N < O < C linker type. Although these diverse chemical features do not influence the global structure of adducted DNA, the adducts differentially impact the conformation local to the adducted site, including the relative populations of structures with the bulky moiety in the major groove (B conformer) and intercalated (stacked) into the helix (S conformer). Specifically, while the smallest phenyl adducts favor the B conformation and the largest pyrenyl-derived adducts stabilize the S conformation, the B/S ratio decreases with an increase in ring size and N > O > C linker composition. The shape and size (length) of the adduct can further finetune the B/S ratio, with β-fused naphthyl or α-fused phenanthryl N-linked adducts and O or C-linked adducts containing ring substitution increasing the prevalence of the S adducted DNA conformation. Overall, this work uncovers the significant effect of bulky moiety size and linker type, as well as the lesser impact of aryl group shape, on adducted DNA structure, which suggests differential replication and repair outcomes, and thereby represents an important step toward rationalizing connections between the structure and biological consequences of diverse DNA adducts.
Collapse
Affiliation(s)
- Ye Eun Rebecca Jeong
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Ryan W Kung
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Janelle Bykowski
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Trinity K Deak
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
3
|
Deshmukh PU, Lad SB, Sudarsan A, Sudhakar S, Aggarwal T, Mandal S, Bagale SS, Kondabagil K, Pradeepkumar PI. Human Translesion Synthesis Polymerases polκ and polη Perform Error-Free Replication across N2-dG Methyleugenol and Estragole DNA Adducts. Biochemistry 2023; 62:2391-2406. [PMID: 37486230 DOI: 10.1021/acs.biochem.2c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The secondary metabolites of polypropanoids, methyleugenol (MEG), and estragole (EG), found in many herbs and spices, are commonly used as food flavoring agents and as ingredients in cosmetics. MEG and EG have been reported to cause hepatocarcinogenicity in rodents, human livers, and lung cells. The formation of N2-dG and N6-dA DNA adducts is primarily attributed to the carcinogenicity of these compounds. Therefore, these compounds have been classified as "possible human carcinogens" by the International Agency for Research on Cancer and "reasonably anticipated to be a human carcinogen" by the National Toxicology Program. Herein, we report the synthesis of the N2-MEG-dG and N2-EG-dG modified oligonucleotides to study the mutagenicity of these DNA adducts. Our studies show that N2-MEG-dG and N2-EG-dG could be bypassed by human translesion synthesis (TLS) polymerases hpolκ and hpolη in an error-free manner. The steady-state kinetics of dCTP incorporation by hpolκ across N2-MEG-dG and N2-EG-dG adducts show that the catalytic efficiencies (kcat/Km) were ∼2.5- and ∼4.4-fold higher, respectively, compared to the unmodified dG template. A full-length primer extension assay demonstrates that hpolκ exhibits better catalytic efficiency than hpolη. Molecular modeling and dynamics studies capturing pre-insertion, insertion, and post-insertion steps reveal the structural features associated with the efficient bypass of the N2-MEG-dG adduct by hpolκ and indicate the reorientation of the adduct in the active site allowing the successful insertion of the incoming nucleotide. Together, these results suggest that though hpolκ and hpolη perform error-free TLS across MEG and EG during DNA replication, the observed carcinogenicity of these adducts could be attributed to the involvement of other low fidelity polymerases.
Collapse
Affiliation(s)
- Priyanka U Deshmukh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Shailesh B Lad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Akhil Sudarsan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sruthi Sudhakar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Tanvi Aggarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Soumyadeep Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - P I Pradeepkumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
4
|
Davidsen JM, Cohen SM, Eisenbrand G, Fukushima S, Gooderham NJ, Guengerich FP, Hecht SS, Rietjens IMCM, Rosol TJ, Harman CL, Taylor SV. FEMA GRAS assessment of derivatives of basil, nutmeg, parsley, tarragon and related allylalkoxybenzene-containing natural flavor complexes. Food Chem Toxicol 2023; 175:113646. [PMID: 36804339 DOI: 10.1016/j.fct.2023.113646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/18/2023]
Abstract
In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a program for the re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavoring ingredients in food. In this publication, tenth in the series, NFCs containing a high percentage of at least one naturally occurring allylalkoxybenzene constituent with a suspected concern for genotoxicity and/or carcinogenicity are evaluated. In a related paper, ninth in the series, NFCs containing anethole and/or eugenol and relatively low percentages of these allylalkoxybenzenes are evaluated. The Panel applies the threshold of toxicological concern (TTC) concept and evaluates relevant toxicology data on the NFCs and their respective constituent congeneric groups. For NFCs containing allylalkoxybenzene constituent(s), the estimated intake of the constituent is compared to the TTC for compounds with structural alerts for genotoxicity and when exceeded, a margin of exposure (MOE) is calculated. BMDL10 values are derived from benchmark dose analyses using Bayesian model averaging for safrole, estragole and methyl eugenol using EPA's BMDS software version 3.2. BMDL10 values for myristicin, elemicin and parsley apiole were estimated by read-across using relative potency factors. Margins of safety for each constituent congeneric group and MOEs for each allylalkoxybenzene constituent for each NFC were determined that indicate no safety concern. The scope of the safety evaluation contained herein does not include added use in dietary supplements or any products other than food. Ten NFCs, derived from basil, estragon (tarragon), mace, nutmeg, parsley and Canadian snakeroot were determined or affirmed as generally recognized as safe (GRAS) under their conditions of intended use as flavor ingredients based on an evaluation of each NFC and the constituents and congeneric groups therein.
Collapse
Affiliation(s)
- Jeanne M Davidsen
- Flavor and Extract Manufacturers Association, 1101 17th Street, N.W., Suite 700, Washington, D.C, 20036, USA
| | - Samuel M Cohen
- Havlik-Wall Professor of Oncology, Dept. of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, NE, 68198-3135, USA
| | - Gerhard Eisenbrand
- University of Kaiserslautern, Germany (Retired), Kühler Grund 48/1, 69126, Heidelberg, Germany
| | - Shoji Fukushima
- Japan Bioassay Research Center, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - Nigel J Gooderham
- Dept. of Metabolism, Digestion, Reproduction, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, United Kingdom
| | - F Peter Guengerich
- Dept. of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| | - Stephen S Hecht
- Masonic Cancer Center and Dept. of Laboratory Medicine and Pathology, Cancer and Cardiovascular Research Building, 2231 6th St, S.E, Minneapolis, MN, 55455, USA
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 6708 WE, Wageningen, the Netherlands
| | - Thomas J Rosol
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, 1 Ohio University, Athens, OH, 45701, USA
| | - Christie L Harman
- Flavor and Extract Manufacturers Association, 1101 17th Street, N.W., Suite 700, Washington, D.C, 20036, USA
| | - Sean V Taylor
- Scientific Secretary to the FEMA Expert Panel, 1101 17th Street, N.W., Suite 700, Washington, D.C, 20036, USA.
| |
Collapse
|
5
|
Pandit S, Singh P, Parthasarathi R. Computational risk assessment framework for the hazard analysis of bisphenols and quinone metabolites. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128031. [PMID: 34933259 DOI: 10.1016/j.jhazmat.2021.128031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/17/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Bisphenol A (BPA) is a widely used chemical in plastics but its proven harmful effects has led to the replacement and production of its analogs that might also induce hazard as well as associated risks. To elucidate the adverse impact of the BPA analogs, a comprehensive computational framework is developed which applies toxicogenomics aligned with Density Functional Theory (DFT) and Molecular Dynamics (MD) based approaches to understand the toxic potential of quinone metabolites of Bisphenol F (BPF) and 3,3'-dimethylbisphenol A (DMBPA). The obtained results indicate a similar chemical reactivity profile for these metabolites of bisphenols to BPA metabolite. MD simulation revealed that the quinone metabolites tend to interact with the DNA comprising hydrogen bonding, van der Waals forces, and electrostatic interactions as an onset for covalent binding to adduct formation. Structural analysis suggests that interactions with DC9, DG10, DG16, DA17, DA18, and DT19 play a crucial role in stabilizing the quinone metabolite in the interactive pocket of DNA. These observations are demonstrating that BPF and DMBPA have the potential to impose genotoxicity via forming the quinone metabolite adducts. Combination of DFT and MD-based computational approaches providing a structure-activity-toxicity spectrum of chemicals can serve for the purpose of risk assessment.
Collapse
Affiliation(s)
- Shraddha Pandit
- Computational Toxicology Facility, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prakrity Singh
- Computational Toxicology Facility, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ramakrishnan Parthasarathi
- Computational Toxicology Facility, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Evaluation of antibacterial activity and reversal of the NorA and MepA efflux pump of estragole against Staphylococcus aureus bacteria. Arch Microbiol 2021; 203:3551-3555. [PMID: 33942156 DOI: 10.1007/s00203-021-02347-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/03/2023]
Abstract
The antibacterial activity of the monoterpene estragole was evaluated against two strains of bacteria with an efflux pump mechanism, which are Staphylococcus aureus 1199B and S. aureus K2068, which have a NorA and MepA pump, respectively. For that, the methodology proposed by CLSI with modifications was followed, and to evaluate the reversal of the efflux pump, subinhibitory concentrations (MIC/8) of estragole and standard pump inhibitors, CCCP and Chlorpromazine were used and it was verified whether they managed to modulate the action of Norfloxacin, Ciprofloxacin and Ethidium Bromide, an indicator of an efflux pump. It was observed that estragole positively modulated norfloxacin and ethidium bromide against the strain of S. aureus 1199B and that it also managed to reduce the MIC of ethidium bromide against the strain of S. aureus K2068. In the non-clinical acute toxicity tests with estragole, the animals treated with the dose of 625 mg/kg/v.o. showed no clinical signs of toxicity, according to the parameters evaluated. These results are promising, since it places estragole as a possible inhibitor of the efflux pump, thus managing to inhibit this mechanism of action in the strains tested.
Collapse
|
7
|
Yang S, Liu JDH, Diem M, Wesseling S, Vervoort J, Oostenbrink C, Rietjens IMCM. Molecular Dynamics and In Vitro Quantification of Safrole DNA Adducts Reveal DNA Adduct Persistence Due to Limited DNA Distortion Resulting in Inefficient Repair. Chem Res Toxicol 2020; 33:2298-2309. [PMID: 32786539 DOI: 10.1021/acs.chemrestox.0c00097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The formation and repair of N2-(trans-isosafrol-3'-yl)-2'-deoxyguanosine (S-3'-N2-dG) DNA adduct derived from the spice and herbal alkenylbenzene constituent safrole were investigated. DNA adduct formation and repair were studied in vitro and using molecular dynamics (MD) simulations. DNA adduct formation was quantified using liquid chromatography-mass spectrometry (LCMS) in wild type and NER (nucleotide excision repair) deficient CHO cells and also in HepaRG cells and primary rat hepatocytes after different periods of repair following exposure to safrole or 1'-hydroxysafrole (1'-OH safrole). The slower repair of the DNA adducts found in NER deficient cells compared to that in CHO wild type cells indicates a role for NER in repair of S-3'-N2-dG DNA adducts. However, DNA repair in liver cell models appeared to be limited, with over 90% of the adducts remaining even after 24 or 48 h recovery. In our further studies, MD simulations indicated that S-3'-N2-dG adduct formation causes only subtle changes in the DNA structure, potentially explaining inefficient activation of NER. Inefficiency of NER mediated repair of S-3'-N2-dG adducts points at persistence and potential bioaccumulation of safrole DNA adducts upon daily dietary exposure.
Collapse
Affiliation(s)
- Shuo Yang
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Jakob D H Liu
- Institute of Molecular Modeling and Simulation, Department of Material Sciences and Process Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Matthias Diem
- Institute of Molecular Modeling and Simulation, Department of Material Sciences and Process Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Sebastiaan Wesseling
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Jacques Vervoort
- Division of Biochemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, Department of Material Sciences and Process Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
8
|
Schulte-Hubbert R, Küpper JH, Thomas AD, Schrenk D. Estragole: DNA adduct formation in primary rat hepatocytes and genotoxic potential in HepG2-CYP1A2 cells. Toxicology 2020; 444:152566. [PMID: 32853702 DOI: 10.1016/j.tox.2020.152566] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/14/2020] [Accepted: 08/22/2020] [Indexed: 01/06/2023]
Abstract
Estragole is a natural constituent in herbs and spices and in products thereof such as essential oils or herbal teas. After cytochrome P450-catalyzed hydroxylation and subsequent sulfation, estragole acts as a genotoxic hepatocarcinogen forming DNA adducts in rodent liver. Because of the genotoxic mode of action and the widespread occurrence in food and phytomedicines a refined risk assessment for estragole is needed. We analyzed the time- and concentration-dependent levels of the DNA adducts N2-(isoestragole-3'-yl)-2'-desoxyguanosine (E3'N2dG) and N6-(isoestragole-3'-yl)-desoxyadenosine (E3'N6dA), reported to be the major adducts formed in rat liver, in rat hepatocytes (pRH) in primary culture after incubation with estragole. DNA adduct levels were measured via UHPLC-ESI-MS/MS using stable isotope dilution analysis. Both adducts were formed in pRH and could already be quantified after an incubation time of 1 h (E3'N6dA at 10 μM, E3'N2dG at 1μM estragole). E3'N2dG, the main adduct at all incubation times and concentrations, could be detected at estragole concentrations < 0.1 μM after 24 h and < 0.5 μM after 48 h. Adduct levels were highest after 6 h and showed a downward trend at later time-points, possibly due to DNA repair and/or apoptosis. While the concentration-response characteristics of adduct formation were apparently linear over the whole concentration range, strong indication for marked hypo-linearity was obtained when the modeling was based on concentrations < 1 μM only. In the micronucleus assay no mutagenic potential of estragole was found in HepG2 cells whereas in HepG2-CYP1A2 cells 1 μM estragole led to a 3.2 fold and 300 μM to a 7.1 fold increase in micronuclei counts. Our findings suggest the existence of a 'practical threshold' dose for DNA adduct formation as an initiating key event of the carcinogenicity of estragole indicating that the default assumption of concentration-response-linearity is questionable, at least for the two major adducts studied here.
Collapse
Affiliation(s)
- Ruth Schulte-Hubbert
- Food Chemistry and Toxicology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Jan-Heiner Küpper
- Molecular Cell Biology, Brandenburg University of Technology, Senftenberg, Germany
| | - Adam D Thomas
- Centre for the Research in Biosciences (CRIB), UWE, Bristol, United Kingdom
| | - Dieter Schrenk
- Food Chemistry and Toxicology, University of Kaiserslautern, Kaiserslautern, Germany.
| |
Collapse
|