1
|
Aluksanasuwan S, Somsuan K, Wanna-Udom S, Roytrakul S, Morchang A, Rongjumnong A, Sakulsak N. Proteomic insights into the regulatory function of ARID1A in colon cancer cells. Oncol Lett 2024; 28:392. [PMID: 38966585 PMCID: PMC11223007 DOI: 10.3892/ol.2024.14525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024] Open
Abstract
The AT-rich interacting domain-containing protein 1A (ARID1A) is a tumor suppressor gene that has been implicated in several cancers, including colorectal cancer (CRC). The present study used a proteomic approach to elucidate the molecular mechanisms of ARID1A in CRC carcinogenesis. Stable ARID1A-overexpressing SW48 colon cancer cells were established using lentivirus transduction and the successful overexpression of ARID1A was confirmed by western blotting. Label-free quantitative proteomic analysis using liquid chromatography-tandem mass spectrometry identified 705 differentially altered proteins in the ARID1A-overexpressing cells, with 310 proteins significantly increased and 395 significantly decreased compared with empty vector control cells. Gene Ontology enrichment analysis highlighted the involvement of the altered proteins mainly in the Wnt signaling pathway. Western blotting supported these findings, as a decreased protein expression of Wnt target genes, including c-Myc, transcription factor T cell factor-1/7 and cyclin D1, were observed in ARID1A-overexpressing cells. Among the altered proteins involved in the Wnt signaling pathway, the interaction network analysis revealed that ARID1A exhibited a direct interaction with E3 ubiquitin-protein ligase zinc and ring finger 3 (ZNRF3), a negative regulator of the Wnt signaling pathway. Further analyses using the The Cancer Genome Atlas colon adenocarcinoma public dataset revealed that ZNRF3 expression significantly impacted the overall survival of patients with CRC and was positively correlated with ARID1A expression. Finally, an increased level of ZNRF3 in ARID1A-overexpressing cells was confirmed by western blotting. In conclusion, the findings of the present study suggest that ARID1A negatively regulates the Wnt signaling pathway through ZNRF3, which may contribute to CRC carcinogenesis.
Collapse
Affiliation(s)
- Siripat Aluksanasuwan
- School of Medicine, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand
- Cancer and Immunology Research Unit, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand
| | - Keerakarn Somsuan
- School of Medicine, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand
- Cancer and Immunology Research Unit, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand
| | - Sasithorn Wanna-Udom
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Muang, Phitsanulok 65000, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Klongluang, Pathum Thani 12120, Thailand
| | - Atthapan Morchang
- School of Medicine, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand
- Cancer and Immunology Research Unit, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand
| | - Artitaya Rongjumnong
- School of Medicine, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand
- Cancer and Immunology Research Unit, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand
| | - Natthiya Sakulsak
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Muang, Phitsanulok 65000, Thailand
- Faculty of Medicine, Praboromarajchanok Institute, Ministry of Public Health, Mueang, Nonthaburi 11000, Thailand
| |
Collapse
|
2
|
Pang Q, Zheng L, Huang R, Xu H, Pan C, Wang Z, Wang T. Acute 1,2-Dichloropropane Poisoning due to Ingestion of Rubber Cement: An Autopsy Case Report and Review. Am J Forensic Med Pathol 2023; 44:345-349. [PMID: 37549028 DOI: 10.1097/paf.0000000000000875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
ABSTRACT 1,2-Dichloropropane (1,2-DCP) is a common industrial solvent and chemical intermediate that can cause acute poisoning to humans through exposure during its production and industrial use. The target organs of 1,2-DCP include the eyes, respiratory system, liver, kidney, central nervous system, and skin. Forensic identification of 1,2-DCP poisoning is difficult because of the lack of characteristic pathological changes. This article reports an autopsy case of acute 1,2-DCP poisoning caused by self-ingestion of rubber cement. A woman developed seizures and coagulation dysfunction after ingesting approximately 10 mL of rubber cement and died 43 hours later. Autopsy revealed generalized subcutaneous hemorrhage, cardiopulmonary multifocal hemorrhage, bronchopneumonia, severe cerebral edema, focal hepatic necrosis, granular deposition in the glomerular capsule and renal tubules, and delipidation of the adrenal cortex. These findings indicate that 1,2-DCP poisoning can induce central nervous system dysfunction, respiratory system damage, liver and kidney function damage, hemolytic anemia, disseminated intravascular coagulation, and adrenal damage. This case may provide useful perspectives for forensic identification of 1,2-DCP poisoning in the future.
Collapse
Affiliation(s)
- Qiuyu Pang
- From the Department of Forensic Medicine and Judicial Appraisal Center, School of Biology and Basic Medical Sciences of Suzhou Medical School of Soochow University, Suzhou, China
| | | | | | | | | | | | | |
Collapse
|
3
|
Lynch HN, Kozal JS, Vincent MJ, Freid RD, Beckett EM, Brown S, Mathis C, Schoeny RS, Maier A. Systematic review of the human health hazards of propylene dichloride. Regul Toxicol Pharmacol 2023; 144:105468. [PMID: 37562533 DOI: 10.1016/j.yrtph.2023.105468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 06/05/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
Propylene dichloride (PDC) is a chlorinated substance used primarily as an intermediate in basic organic chemical manufacturing. The United States Environmental Protection Agency (EPA) is currently evaluating PDC as a high-priority substance under the Toxic Substances Control Act (TSCA). We conducted a systematic review of the non-cancer and cancer hazards of PDC using the EPA TSCA and Integrated Risk Information System (IRIS) frameworks. We identified 12 epidemiological, 16 toxicokinetic, 34 experimental animal, and 49 mechanistic studies. Point-of-contact respiratory effects are the most sensitive non-cancer effects after inhalation exposure, and PDC is neither a reproductive nor a developmental toxicant. PDC is not mutagenic in vivo, and while in vitro evidence is mixed, DNA strand breaks consistently occur. Nasal tumors in rats and lung tumors in mice occurred after lifetime high-level inhalation exposure. Cholangiocarcinoma (CCA) was observed in Japanese print workers exposed to high concentrations of PDC. However, co-exposures, as well as liver parasites, hepatitis, and other risk factors, may also have contributed. The cancer mode of action (MOA) analysis revealed that PDC may act through multiple biological pathways occurring sequentially and/or simultaneously, although chronic tissue damage and inflammation likely dominate. Critically, health benchmarks protective of non-cancer effects are expected to protect against cancer in humans.
Collapse
|
4
|
Romano F, Franco F, Corana M, Abbadessa G, Di Scipio F, Pergolizzi B, Castrignano C, Aimetti M, Berta GN. Cystatin SN (CST1) as a Novel Salivary Biomarker of Periodontitis. Int J Mol Sci 2023; 24:13834. [PMID: 37762137 PMCID: PMC10530756 DOI: 10.3390/ijms241813834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Identification of biomarkers could help in assessing periodontal health status and monitoring treatment outcomes. Therefore, the aim of this cross-sectional study was to identify potential innovative salivary biomarkers for the diagnosis of periodontitis using an untargeted proteomic approach. Forty-five healthy non-smoker participants diagnosed as having periodontally healthy conditions (H), severe periodontitis (P), and healthy but reduced periodontium after active periodontal treatment (T) were consecutively enrolled (15 per each group) in the study. A higher number of spots were identified in the proteome of unstimulated whole saliva collected from H and T subjects compared with P group, mainly within the range of 8-40 kDa. Protein spots of interest were analysed by MALDI-TOF-MS, allowing the identification of cystatin SN (CST1) isoform, as confirmed by Western blot. CST1 was markedly expressed in the H group, while it was absent in most P samples (p < 0.001). Interestingly, a distinct CST1 expression was observed in saliva from T patients. CST1 was negatively correlated with the percentage of pathological sites (p < 0.001) and was effective in discriminating active periodontitis from healthy periodontal status (whether H or T). Therefore, salivary CST1 may be a promising non-invasive biomarker for periodontal disease diagnosis and monitoring.
Collapse
Affiliation(s)
- Federica Romano
- Department of Surgical Sciences, C.I.R. Dental School, Section of Periodontology, University of Turin, 10126 Turin, Italy; (F.R.); (M.C.); (F.D.S.); (M.A.)
| | - Francesco Franco
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (F.F.); (G.A.); (B.P.); (C.C.)
| | - Matteo Corana
- Department of Surgical Sciences, C.I.R. Dental School, Section of Periodontology, University of Turin, 10126 Turin, Italy; (F.R.); (M.C.); (F.D.S.); (M.A.)
| | - Giuliana Abbadessa
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (F.F.); (G.A.); (B.P.); (C.C.)
| | - Federica Di Scipio
- Department of Surgical Sciences, C.I.R. Dental School, Section of Periodontology, University of Turin, 10126 Turin, Italy; (F.R.); (M.C.); (F.D.S.); (M.A.)
| | - Barbara Pergolizzi
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (F.F.); (G.A.); (B.P.); (C.C.)
| | - Chiara Castrignano
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (F.F.); (G.A.); (B.P.); (C.C.)
| | - Mario Aimetti
- Department of Surgical Sciences, C.I.R. Dental School, Section of Periodontology, University of Turin, 10126 Turin, Italy; (F.R.); (M.C.); (F.D.S.); (M.A.)
| | - Giovanni N. Berta
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (F.F.); (G.A.); (B.P.); (C.C.)
| |
Collapse
|
5
|
Kozal JS, Lynch HN, Klapacz J, Schoeny RS, Jean PA, Maier A. Mode of action assessment for propylene dichloride as a human carcinogen. Chem Biol Interact 2023; 382:110382. [PMID: 36754223 DOI: 10.1016/j.cbi.2023.110382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/16/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023]
Abstract
As part of a systematic review of the non-cancer and cancer hazards of propylene dichloride (PDC), with a focus on potential carcinogenicity in workers following inhalation exposures, we determined that a mode of action (MOA)-centric framing of cancer effects was warranted. In our MOA analysis, we systematically reviewed the available mechanistic evidence for PDC-induced carcinogenesis, and we mapped biologically plausible MOA pathways and key events (KEs), as guided by the International Programme on Chemical Safety (IPCS)-MOA framework. For the identified pathways and KEs, biological concordance, essentiality of KEs, concordance of empirical observations among KEs, consistency, and analogy were evaluated. The results of this analysis indicate that multiple biologically plausible pathways may contribute to the cancer MOA for PDC, but that the relevant pathways vary by exposure route and level, tissue type, and species; further, more than one pathway may occur concurrently at high exposure levels. While several important data gaps exist, evidence from in vitro mechanistic studies, in vivo experimental animal studies, and ex vivo human tumor tissue analyses indicates that the predominant MOA pathway likely involves saturation of cytochrome p450 2E1 (CYP2E1)-glutathione (GSH) detoxification (molecular initiating event; MIE), accumulation of CYP2E1-oxidative metabolites, cytotoxicity, chronic tissue damage and inflammation, and ultimately tumor formation. Tumors may occur through several subsets of inflammatory KEs, including inflammation-induced aberrant expression of activation-induced cytidine deaminase (AID), which causes DNA strand breaks and mutations and can lead to tumors with a characteristic mutational signature found in occupational cholangiocarcinoma. Dose concordance analysis showed that low-dose mutagenicity (from any pathway) is not a driving MOA, and that prevention of target tissue damage and inflammation (associated with saturation of CYP2E1-GSH detoxification) is expected to also prevent the cascade of processes responsible for tumor formation.
Collapse
Affiliation(s)
| | | | - Joanna Klapacz
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI, 48674, USA
| | | | | | | |
Collapse
|
6
|
Kimura Y, Ekuban FA, Zong C, Sugie S, Zhang X, Itoh K, Yamamoto M, Ichihara S, Ohsako S, Ichihara G. Role of Nrf2 in 1,2-dichloropropane-induced cell proliferation and DNA damage in the mouse liver. Toxicol Sci 2023; 195:28-41. [PMID: 37326970 DOI: 10.1093/toxsci/kfad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
1,2-Dichloropropane (1,2-DCP) is recognized as the causative chemical of occupational cholangiocarcinoma in printing workers in Japan. However, the cellular and molecular mechanisms of 1,2-DCP-induced carcinogenesis remains elusive. The present study investigated cellular proliferation, DNA damage, apoptosis, and expression of antioxidant and proinflammatory genes in the liver of mice exposed daily to 1,2-DCP for 5 weeks, and the role of nuclear factor erythroid 2-related factor 2 (Nrf2) in these responses. Wild-type and Nrf2-knockout (Nrf2-/-) mice were administered 1,2-DCP by gastric gavage, and then the livers were collected for analysis. Immunohistochemistry for BrdU or Ki67 and TUNEL assay revealed that exposure to 1,2-DCP dose-dependently increased proliferative cholangiocytes, whereas decreased apoptotic cholangiocytes in wild-type mice but not in Nrf2-/- mice. Western blot and quantitative real-time PCR showed that exposure to 1,2-DCP increased the levels of DNA double-strand break marker γ-H2AX and mRNA expression levels of NQO1, xCT, GSTM1, and G6PD in the livers of wild-type mice in a dose-dependent manner, but no such changes were noted in Nrf2-/- mice. 1,2-DCP increased glutathione levels in the liver of both the wild-type and Nrf2-/- mice, suggesting that an Nrf2-independent mechanism contributes to 1,2-DCP-induced increase in glutathione level. In conclusion, the study demonstrated that exposure to 1,2-DCP induced proliferation but reduced apoptosis in cholangiocytes, and induced double-strand DNA breaks and upregulation of antioxidant genes in the liver in an Nrf2-dependent manner. The study suggests a role of Nrf2 in 1,2-DCP-induced cell proliferation, antiapoptotic effect, and DNA damage, which are recognized as key characteristics of carcinogens.
Collapse
Affiliation(s)
- Yusuke Kimura
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Frederick Adams Ekuban
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Cai Zong
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Shigeyuki Sugie
- Department of Diagnostic Pathology, Asahi University Murakami Memorial Hospital, Gifu 550-8856, Japan
| | - Xiao Zhang
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, People's Republic of China
| | - Ken Itoh
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Masayuki Yamamoto
- Division of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke 329-0431, Japan
| | - Seiichiro Ohsako
- Department of Environmental and Preventive Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| |
Collapse
|
7
|
Chen L, Zhou M, Li H, Liu D, Liao P, Zong Y, Zhang C, Zou W, Gao J. Mitochondrial heterogeneity in diseases. Signal Transduct Target Ther 2023; 8:311. [PMID: 37607925 PMCID: PMC10444818 DOI: 10.1038/s41392-023-01546-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/21/2023] [Accepted: 06/13/2023] [Indexed: 08/24/2023] Open
Abstract
As key organelles involved in cellular metabolism, mitochondria frequently undergo adaptive changes in morphology, components and functions in response to various environmental stresses and cellular demands. Previous studies of mitochondria research have gradually evolved, from focusing on morphological change analysis to systematic multiomics, thereby revealing the mitochondrial variation between cells or within the mitochondrial population within a single cell. The phenomenon of mitochondrial variation features is defined as mitochondrial heterogeneity. Moreover, mitochondrial heterogeneity has been reported to influence a variety of physiological processes, including tissue homeostasis, tissue repair, immunoregulation, and tumor progression. Here, we comprehensively review the mitochondrial heterogeneity in different tissues under pathological states, involving variant features of mitochondrial DNA, RNA, protein and lipid components. Then, the mechanisms that contribute to mitochondrial heterogeneity are also summarized, such as the mutation of the mitochondrial genome and the import of mitochondrial proteins that result in the heterogeneity of mitochondrial DNA and protein components. Additionally, multiple perspectives are investigated to better comprehend the mysteries of mitochondrial heterogeneity between cells. Finally, we summarize the prospective mitochondrial heterogeneity-targeting therapies in terms of alleviating mitochondrial oxidative damage, reducing mitochondrial carbon stress and enhancing mitochondrial biogenesis to relieve various pathological conditions. The possibility of recent technological advances in targeted mitochondrial gene editing is also discussed.
Collapse
Affiliation(s)
- Long Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengnan Zhou
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang, 110001, China
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China.
| |
Collapse
|
8
|
Suzuki M, Takeshita K, Kitamura Y, Kuribayashi M, Huang Z, Ichihara G, Oikawa S, Ichihara S. In Vitro Exposure to Glucose Alters the Expression of Phosphorylated Proteins in Platelets. Biomedicines 2023; 11:biomedicines11020543. [PMID: 36831080 PMCID: PMC9953272 DOI: 10.3390/biomedicines11020543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Diabetes mellitus (DM) is a pro-thrombotic state that can potentially cause serious cardiovascular complications. Platelet hyperactivation plays an important role in these pathological processes, however there is little or no information on the effect of hyperglycemia on platelet proteins. The aim of this study was to identify the molecular targets associated with platelet reactivity under hyperglycemia. Towards this goal, we examined the effects of the exposure of platelets to 1 and 2 h glucose (300 mg/dL) and control (vehicle and osmolality control using mannitol) on platelet proteins (n = 4 samples per group) using two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) combined with MALDI-TOF/TOF tandem mass spectrometry. Two-hour exposure to glucose significantly up-regulated the expression of ATP synthase subunit beta, filamin-A, and L-lactate dehydrogenase A chain in platelets. Pro-Q Diamond staining confirmed the effect of 2 h glucose on vinculin, heat shock protein HSP 90-alpha, filamin-A, and fructose-bisphosphate aldolase A (platelet phosphorylated proteins). The identified proteins are involved in various cellular processes and functions and possibly in platelet reactivity under hyperglycemic conditions.
Collapse
Affiliation(s)
- Mizuho Suzuki
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Japan
| | - Kyosuke Takeshita
- Department of Clinical Laboratory, Saitama Medical Center, Saitama University, Saitama 350-8550, Japan
| | - Yuki Kitamura
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Japan
| | - Marie Kuribayashi
- Department of Human Functional Genomics, Life Science Research Center, Mie University, Tsu 514-8507, Japan
| | - Zhenlie Huang
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Japan
- Department of Human Functional Genomics, Life Science Research Center, Mie University, Tsu 514-8507, Japan
- Correspondence:
| |
Collapse
|
9
|
Feng M, Zhou J, Yu X, Mao W, Guo Y, Wang H. Insights into biodegradation mechanisms of triphenyl phosphate by a novel fungal isolate and its potential in bioremediation of contaminated river sediment. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127545. [PMID: 34879531 DOI: 10.1016/j.jhazmat.2021.127545] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/07/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
In this study, Aspergillus sydowii FJH-1 isolated from soil was verified to be a novel triphenyl phosphate (TPhP) degrader. Biodegradation efficiency of TPhP by Aspergillus sydowii FJH-1 exceeded 90% within 6 days under the optimal conditions (pH 4-9, 30 ℃, initial concentration less than 20 mg/L). Proteomics analysis uncovered the proteins perhaps involved in hydrolysis, hydroxylation, methylation and sulfonation of TPhP and the primary intracellular adaptive responses of Aspergillus sydowii FJH-1 to TPhP stress. The expression of carboxylic ester hydrolase along with several thioredoxin- and glutathione-dependent oxidoreductases were induced to withstand the toxicity of TPhP. The presence of TPhP also caused obvious upregulation of proteins concerned with glycolysis, pentose phosphate pathway and tricarboxylic acid cycle. Data from toxicological tests confirmed that the cytotoxicity and phytotoxicity of TPhP was effectively decreased after treatment with Aspergillus sydowii FJH-1. Additionally, bioaugmentation with Aspergillus sydowii FJH-1 was available for promoting TPhP removal in real water and water-sediment system. Collectively, the present study offered a deeper insight into the biodegradation mechanism and pathway of TPhP by a newly screened fungal strain Aspergillus sydowii FJH-1 and validated the feasibility of applying this novel degrader in the bioremediation of TPhP-polluted matrices.
Collapse
Affiliation(s)
- Mi Feng
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agroenvironmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Jiahua Zhou
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Wei Mao
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China
| | - Yushuo Guo
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China
| | - Hao Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China
| |
Collapse
|
10
|
Omics-Based Platforms: Current Status and Potential Use for Cholangiocarcinoma. Biomolecules 2020; 10:biom10101377. [PMID: 32998289 PMCID: PMC7600697 DOI: 10.3390/biom10101377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/26/2020] [Accepted: 09/26/2020] [Indexed: 02/07/2023] Open
Abstract
Cholangiocarcinoma (CCA) has been identified as a highly malignant cancer that can be transformed from epithelial cells of the bile duct, including intrahepatic, perihilar and extrahepatic. High-resolution imaging tools (abdominal ultrasound, computed tomography and percutaneous transhepatic cholangial drainage) are recruited for diagnosis. However, the lack of early diagnostic biomarkers and treatment evaluation can lead to serious outcomes and poor prognosis (i.e., CA19-9, MUC5AC). In recent years, scientists have established a large number of omics profiles to reveal underlying mechanisms and networks (i.e., IL-6/STAT3, NOTCH). With these results, we achieved several genomic alteration events (i.e., TP53mut, KRASmut) and epigenetic modifications (i.e., DNA methylation, histone modification) in CCA cells and clinical patients. Moreover, we reviewed candidate gene (such as NF-kB, YAP1) that drive gene transcription factors and canonical pathways through transcriptomics profiles (including microarrays and next-generation sequencing). In addition, the proteomics database also indicates which molecules and their directly binding status could trigger dysfunction signatures in tumorigenesis (carbohydrate antigen 19-9, mucins). Most importantly, we collected metabolomics datasets and pivotal metabolites. These results reflect the pharmacotherapeutic options and evaluate pharmacokinetic/pharmacodynamics in vitro and in vivo. We reversed the panels and selected many potentially small compounds from the connectivity map and L1000CDS2 system. In this paper, we summarize the prognostic value of each candidate gene and correlate this information with clinical events in CCA. This review can serve as a reference for further research to clearly investigate the complex characteristics of CCA, which may lead to better prognosis, drug repurposing and treatment strategies.
Collapse
|