1
|
Lins MP, de Melo IS. Exploring the interplay between cannabinoids and thymic functions. Toxicol Sci 2024; 202:1-12. [PMID: 39250730 DOI: 10.1093/toxsci/kfae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Cannabinoids, derived from the Cannabis sativa plant, have garnered increasing attention for their potential therapeutic applications in various diseases. The pharmacologically active compounds in Cannabis, such as delta-9-tetrahydrocannabinol and cannabidiol, exhibit diverse immunomodulatory properties. Although studies have explored the effects of cannabinoids on immune function, their specific interactions with the thymus, a primary immune organ critical for T-cell development and maturation, remain an intriguing area of investigation. As the thymus plays a fundamental role in shaping the immune repertoire, understanding the interplay between cannabinoids and thymic function may shed light on potential benefits or concerns associated with Cannabis-based therapies. This article aims to provide an overview of the current scientific knowledge regarding the impact of medicinal Cannabis on the thymus and its implications for disease treatment and immune health.
Collapse
Affiliation(s)
- Marvin Paulo Lins
- Laboratory of Immunology, Department of Basic Sciences in Health, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá-MT, 78060-900, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-360, Brazil
| | - Igor Santana de Melo
- Laboratory of Neuropharmacology and Integrative Physiology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, 57072-900, Brazil
| |
Collapse
|
2
|
Wąsik J, Likońska A, Kurowski M. IgE-Mediated Allergy and Asymptomatic Sensitization to Cannabis Allergens-Review of Current Knowledge and Presentation of Six Cases. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:954. [PMID: 38929571 PMCID: PMC11205784 DOI: 10.3390/medicina60060954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Cannabis allergy is a relatively new phenomenon described in the 1970s. Its increased frequency has been observed over the last years due to the increasing therapeutic and recreational use of cannabis-based products. Sensitization possibly leading to allergy symptoms can occur not only through the smoking of cannabis, but also through ingestion, the inhalation of pollen, or direct contact. The severity of symptoms varies from benign pruritus to anaphylaxis. There is scant information available to support clinicians throughout the entire therapeutic process, starting from diagnosis and ending in treatment. In this review, we present six cases of patients in whom molecular in vitro testing revealed sensitization to cannabis extract and/or cannabis-derived nsLTP molecules (Can s 3). Based on these cases, we raise important questions regarding this topic. The article discusses current proposals and highlights the importance of further research not only on cannabis allergy but also on asymptomatic sensitization to cannabis allergens, which may be ascertained in some percentage of the population.
Collapse
Affiliation(s)
- Jakub Wąsik
- Department of Immunology and Allergy, Medical University of Lodz, 90-419 Lodz, Poland; (J.W.); (A.L.)
- Student Scientific Association, Department of Immunology and Allergy, Medical University of Lodz, 90-419 Lodz, Poland
| | - Aleksandra Likońska
- Department of Immunology and Allergy, Medical University of Lodz, 90-419 Lodz, Poland; (J.W.); (A.L.)
| | - Marcin Kurowski
- Department of Immunology and Allergy, Medical University of Lodz, 90-419 Lodz, Poland; (J.W.); (A.L.)
| |
Collapse
|
3
|
Chen K, Xu B, Xiao X, Long L, Zhao Q, Fang Z, Tu X, Wang J, Xu J, Wang H. Involvement of CKS1B in the anti-inflammatory effects of cannabidiol in experimental stroke models. Exp Neurol 2024; 373:114654. [PMID: 38104887 DOI: 10.1016/j.expneurol.2023.114654] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/16/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
We have previously demonstrated that treatment with cannabidiol (CBD) ameliorates mitochondrial dysfunction and attenuates neuronal injury in rats following cerebral ischemia. However, the role of CBD in the progression of ischemic stroke-induced inflammation and the molecules involved remain unclear. Here, we found that CBD suppressed the production of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), reduced the activation of microglia, ameliorated mitochondrial deficits, and decreased the phosphorylation of nuclear factor κ-B (NF-κB) in BV-2 cells subjected to oxygen-glucose deprivation/reoxygenation (OGD/R). Cyclin-dependent kinase regulatory subunit 1B (CKS1B) expression was decreased in BV-2 cells following OGD/R and this reduction was blocked by treatment with CBD. Knockdown of CKS1B increased the activation of microglia and enhanced the production of IL-1β and TNF-α in BV-2 cells treated with CBD. Moreover, CKS1B knockdown exacerbated mitochondrial deficits and increased NF-κB phosphorylation. CBD treatment also ameliorated brain injury, reduced neuroinflammation, and enhanced the protein levels of mitochondrial transcription factor A and CKS1B in rats following middle cerebral artery occlusion/reperfusion. These data identify CKS1B as a novel regulator of neuroinflammation; and reveals its involvement in the anti-inflammatory effects of CBD. Interventions targeting CKS1B expression are potentially promising for treating in ischemic stroke.
Collapse
Affiliation(s)
- Kechun Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Bingtian Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xuan Xiao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lu Long
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qian Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zicen Fang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xingxing Tu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiakang Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiangping Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou 510515, China.
| | - Haitao Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou 510515, China.
| |
Collapse
|