1
|
Isaev D, Yang KHS, Petroianu G, Lorke DE, Oz M. Methylene Blue Inhibits Cromakalim-Activated K + Currents in Follicle-Enclosed Oocytes. MEMBRANES 2023; 13:121. [PMID: 36837624 PMCID: PMC9966726 DOI: 10.3390/membranes13020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
The effects of methylene blue (MB) on cromakalim-induced K+ currents were investigated in follicle-enclosed Xenopus oocytes. In concentrations ranging from 3-300 μM, MB inhibited K+ currents (IC50: 22.4 μM) activated by cromakalim, which activates KATP channels. MB inhibited cromakalim-activated K+ currents in a noncompetitive and voltage-independent manner. The respective EC50 and slope values for cromakalim-activation of K+ currents were 194 ± 21 µM and 0.91 for controls, and 206 ± 24 µM and 0.87 in the presence of 30 μM MB. The inhibition of cromakalim-induced K+ currents by MB was not altered by pretreatment with the Ca2+ chelator BAPTA, which suggests that MB does not influence Ca2+-activated second messenger pathways. K+ currents mediated through a C-terminally deleted form of Kir6.2 (KirΔC26), which does not contain the sulfonylurea receptor, were still inhibited by MB, indicating direct interaction of MB with the channel-forming Kir6.2 subunit. The binding characteristics of the KATP ligand [3H]glibenclamide are not altered by MB in a concentration range between 1 μM-1 mM, as suggested by radioligand binding assay. The presence of a membrane permeable cGMP analogue (8-Br-cGMP, 100 µM) and a guanylate cyclase activator (BAY 58-2667, 3 µM) did not affect the inhibitory effects of MB, suggesting that MB does not inhibit cromakalim-activated K+ currents through guanylate cyclase. Collectively, these results suggest that MB directly inhibits cromakalim-activated K+ currents in follicular cells of Xenopus oocytes.
Collapse
Affiliation(s)
- Dmytro Isaev
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, 01024 Kiev, Ukraine
| | - Keun-Hang Susan Yang
- Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA
| | - Georg Petroianu
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Dietrich Ernst Lorke
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait
| |
Collapse
|
2
|
Nebrisi EE, Prytkova T, Lorke DE, Howarth L, Alzaabi AH, Yang KHS, Howarth FC, Oz M. Capsaicin Is a Negative Allosteric Modulator of the 5-HT 3 Receptor. Front Pharmacol 2020; 11:1274. [PMID: 32982728 PMCID: PMC7490547 DOI: 10.3389/fphar.2020.01274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/31/2020] [Indexed: 01/16/2023] Open
Abstract
In this study, effects of capsaicin, an active ingredient of the capsicum plant, were investigated on human 5-hydroxytryptamine type 3 (5-HT3) receptors. Capsaicin reversibly inhibited serotonin (5-HT)-induced currents recorded by two-electrode voltage clamp method in Xenopus oocytes. The inhibition was time- and concentration-dependent with an IC50 = 62 μM. The effect of capsaicin was not altered in the presence of capsazepine, and by intracellular BAPTA injections or trans-membrane potential changes. In radio-ligand binding studies, capsaicin did not change the specific binding of the 5-HT3 antagonist [3H]GR65630, indicating that it is a noncompetitive inhibitor of 5-HT3 receptor. In HEK-293 cells, capsaicin inhibited 5-HT3 receptor induced aequorin luminescence with an IC50 of 54 µM and inhibition was not reversed by increasing concentrations of 5-HT. In conclusion, the results indicate that capsaicin acts as a negative allosteric modulator of human 5-HT3 receptors.
Collapse
Affiliation(s)
- Eslam El Nebrisi
- Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates.,Department of Pharmacology, Dubai Medical College, Dubai Medical University, Dubai, United Arab Emirates
| | | | - Dietrich Ernst Lorke
- Department of Anatomy and Cellular Biology, Khalifa University, Abu Dhabi, United Arab Emirates.,Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Luke Howarth
- Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Asma Hassan Alzaabi
- Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Keun-Hang Susan Yang
- Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA, United States
| | - Frank C Howarth
- Department of Physiology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
| |
Collapse
|
3
|
Capsaicin inhibits the function of α 7-nicotinic acetylcholine receptors expressed in Xenopus oocytes and rat hippocampal neurons. Eur J Pharmacol 2019; 857:172411. [PMID: 31152699 DOI: 10.1016/j.ejphar.2019.172411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 11/21/2022]
Abstract
Capsaicin is a naturally occurring alkaloid derived from Chili peppers fruits. Using the two-electrode voltage-clamp technique in Xenopus oocyte expression system, actions of capsaicin on the functional properties of α7 subunit of the human nicotinic acetylcholine (α7 nACh) receptor were investigated. Ion currents activated by ACh (100 μM) were reversibly inhibited with an IC50 value of 8.6 μM. Inhibitory actions of capsaicin was independent of membrane potential. Furthermore, Ca2+-dependent Cl- channels expressed endogenously in oocytes were not involved in inhibitory actions of capsaicin. In addition, increasing the ACh concentrations could not reverse the inhibitory effects of capsaicin. Importantly, specific binding of [125I] α-bungarotoxin remained unaltered by capsaicin suggesting that its effect is noncompetitive. Whole cell patch-clamp technique was performed in CA1 stratum radiatum interneurons of rat hippocampal slices. Ion currents induced by choline, a selective-agonist of α7-receptor, were reversibly inhibited by 10 min bath application of capsaicin (10 μM). Collectively, results of our investigation indicate that the function of the α7-nACh receptor expressed in Xenopus oocytes and in hippocampal interneurons are inhibited by capsaicin.
Collapse
|
4
|
El Nebrisi EG, Bagdas D, Toma W, Al Samri H, Brodzik A, Alkhlaif Y, Yang KHS, Howarth FC, Damaj IM, Oz M. Curcumin Acts as a Positive Allosteric Modulator of α7-Nicotinic Acetylcholine Receptors and Reverses Nociception in Mouse Models of Inflammatory Pain. J Pharmacol Exp Ther 2018; 365:190-200. [PMID: 29339457 PMCID: PMC7947331 DOI: 10.1124/jpet.117.245068] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/27/2017] [Indexed: 12/11/2022] Open
Abstract
Effects of curcumin, a major ingredient of turmeric, were tested on the function of the α7-subunit of the human nicotinic acetylcholine (α7-nACh) receptor expressed in Xenopus oocytes and on nociception in mouse models of tonic and visceral pain. Curcumin caused a significant potentiation of currents induced by acetylcholine (ACh; 100 μM) with an EC50 value of 0.2 µM. The effect of curcumin was not dependent on the activation of G-proteins and protein kinases and did not involve Ca2+-dependent Cl- channels expressed endogenously in oocytes. Importantly, the extent of curcumin potentiation was enhanced significantly by decreasing ACh concentrations. Curcumin did not alter specific binding of [125I]α-bungarotoxin. In addition, curcumin attenuated nociceptive behavior in both tonic and visceral pain models without affecting motor and locomotor activity and without producing tolerance. Pharmacological and genetic approaches revealed that the antinociceptive effect of curcumin was mediated by α7-nACh receptors. Curcumin potentiated the antinociceptive effects of the α7-nACh receptor agonist N-(3R)-1-azabicyclo[2.2.2]oct-3-yl-4-chlorobenzamide (PNU282987). Collectively, our results indicate that curcumin is a positive allosteric modulator of α7-nACh receptor and reverses nociception in mouse models of tonic and visceral pain.
Collapse
Affiliation(s)
- Eslam Gaber El Nebrisi
- Departments of Pharmacology (E.G.E.N., H.A.S., M.O.) and Physiology (F.C.H.), College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., A.B., Y.A., I.M.D.); Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey (D.B.); Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California (K.-H.S.Y.); and Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar (M.O.)
| | - Deniz Bagdas
- Departments of Pharmacology (E.G.E.N., H.A.S., M.O.) and Physiology (F.C.H.), College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., A.B., Y.A., I.M.D.); Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey (D.B.); Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California (K.-H.S.Y.); and Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar (M.O.)
| | - Wisam Toma
- Departments of Pharmacology (E.G.E.N., H.A.S., M.O.) and Physiology (F.C.H.), College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., A.B., Y.A., I.M.D.); Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey (D.B.); Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California (K.-H.S.Y.); and Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar (M.O.)
| | - Halima Al Samri
- Departments of Pharmacology (E.G.E.N., H.A.S., M.O.) and Physiology (F.C.H.), College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., A.B., Y.A., I.M.D.); Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey (D.B.); Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California (K.-H.S.Y.); and Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar (M.O.)
| | - Anna Brodzik
- Departments of Pharmacology (E.G.E.N., H.A.S., M.O.) and Physiology (F.C.H.), College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., A.B., Y.A., I.M.D.); Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey (D.B.); Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California (K.-H.S.Y.); and Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar (M.O.)
| | - Yasmin Alkhlaif
- Departments of Pharmacology (E.G.E.N., H.A.S., M.O.) and Physiology (F.C.H.), College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., A.B., Y.A., I.M.D.); Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey (D.B.); Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California (K.-H.S.Y.); and Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar (M.O.)
| | - Keun-Hang Susan Yang
- Departments of Pharmacology (E.G.E.N., H.A.S., M.O.) and Physiology (F.C.H.), College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., A.B., Y.A., I.M.D.); Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey (D.B.); Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California (K.-H.S.Y.); and Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar (M.O.)
| | - Frank Christopher Howarth
- Departments of Pharmacology (E.G.E.N., H.A.S., M.O.) and Physiology (F.C.H.), College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., A.B., Y.A., I.M.D.); Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey (D.B.); Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California (K.-H.S.Y.); and Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar (M.O.)
| | - Imad M Damaj
- Departments of Pharmacology (E.G.E.N., H.A.S., M.O.) and Physiology (F.C.H.), College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., A.B., Y.A., I.M.D.); Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey (D.B.); Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California (K.-H.S.Y.); and Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar (M.O.)
| | - Murat Oz
- Departments of Pharmacology (E.G.E.N., H.A.S., M.O.) and Physiology (F.C.H.), College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., A.B., Y.A., I.M.D.); Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey (D.B.); Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California (K.-H.S.Y.); and Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar (M.O.)
| |
Collapse
|
5
|
Thujone inhibits the function of α 7-nicotinic acetylcholine receptors and impairs nicotine-induced memory enhancement in one-trial passive avoidance paradigm. Toxicology 2017; 384:23-32. [PMID: 28395994 DOI: 10.1016/j.tox.2017.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 11/21/2022]
Abstract
Effects of thujone, a major ingredient of absinthe, wormwood oil and some herbal medicines, were tested on the function of α7 subunit of the human nicotinic acetylcholine (α7 nACh) receptor expressed in Xenopus oocytes using the two-electrode voltage-clamp technique. Thujone reversibly inhibited ACh (100μM)-induced currents with an IC50 value of 24.7μM. The effect of thujone was not dependent on the membrane potential and did not involve Ca2+-dependent Cl- channels expressed endogenously in oocytes. Inhibition by thujone was not reversed by increasing ACh concentrations. Moreover, specific binding of [125I] α-bungarotoxin was not altered by thujone. Further experiments in SH-EP1 cells expressing human α7 nACh receptor indicated that thujone suppressed choline induced Ca2+ transients in a concentration-dependent manner. In rat hippocampal CA3-dentate gyrus synapses, nicotine-induced enhancement of long-term potentiation was also inhibited by thujone. Furthermore, the results observed in in-vivo one-trial passive avoidance paradigm show that thujone (1.25mg/kg, i.p.) significantly impaired nicotine-induced enhancement of learning and memory in Wistar rats. Collectively, our results indicate that thujone inhibits the function of the α7-nACh receptor and impairs cellular and behavioral correlates of cholinergic modulation of learning and memory.
Collapse
|
6
|
Nurulain S, Prytkova T, Sultan AM, Ievglevskyi O, Lorke D, Yang KHS, Petroianu G, Howarth FC, Kabbani N, Oz M. Inhibitory actions of bisabolol on α7-nicotinic acetylcholine receptors. Neuroscience 2015; 306:91-9. [PMID: 26283025 DOI: 10.1016/j.neuroscience.2015.08.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 08/07/2015] [Accepted: 08/10/2015] [Indexed: 12/20/2022]
Abstract
Bisabolol is a plant-derived monocyclic sesquiterpene alcohol with antinociceptive and antiinflammatory actions. However, molecular targets mediating these effects of bisabolol are poorly understood. In this study, using a two-electrode voltage-clamp and patch-clamp techniques and live cellular calcium imaging, we have investigated the effect of bisabolol on the function of human α7 subunit of nicotinic acetylcholine receptor (nAChR) in Xenopus oocytes, interneurons of rat hippocampal slices. We have found that bisabolol reversibly and concentration dependently (IC50 = 3.1 μM) inhibits acetylcholine (ACh)-induced α7 receptor-mediated currents. The effect of bisabolol was not dependent on the membrane potential. Bisabolol inhibition was not changed by intracellular injection of the Ca(2+) chelator BAPTA and perfusion with Ca(2+)-free solution containing Ba(2+), suggesting that endogenous Ca(2+)-dependent Cl(-) channels are not involved in bisabolol actions. Increasing the concentrations of ACh did not reverse bisabolol inhibition. Furthermore, the specific binding of [(125)I] α-bungarotoxin was not attenuated by bisabolol. Choline-induced currents in CA1 interneurons of rat hippocampal slices were also inhibited with IC50 of 4.6 μM. Collectively, our results suggest that bisabolol directly inhibits α7-nAChRs via a binding site on the receptor channel.
Collapse
Affiliation(s)
- S Nurulain
- Laboratory of Functional Lipidomics, Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - T Prytkova
- Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA
| | - A M Sultan
- Laboratory of Functional Lipidomics, Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - O Ievglevskyi
- Laboratory of Functional Lipidomics, Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - D Lorke
- Department of Cellular Biology & Pharmacology, College of Medicine, Florida International University, Miami, FL 33199, USA
| | - K-H S Yang
- Laboratory of Functional Lipidomics, Department of Physiology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - G Petroianu
- Department of Cellular Biology & Pharmacology, College of Medicine, Florida International University, Miami, FL 33199, USA
| | - F C Howarth
- Laboratory of Functional Lipidomics, Department of Physiology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - N Kabbani
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA
| | - M Oz
- Laboratory of Functional Lipidomics, Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates.
| |
Collapse
|
7
|
Sadek B, Khanian SS, Ashoor A, Prytkova T, Ghattas MA, Atatreh N, Nurulain SM, Yang KHS, Howarth FC, Oz M. Effects of antihistamines on the function of human α7-nicotinic acetylcholine receptors. Eur J Pharmacol 2014; 746:308-16. [PMID: 25445036 DOI: 10.1016/j.ejphar.2014.10.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 10/20/2014] [Accepted: 10/22/2014] [Indexed: 01/16/2023]
Abstract
Effects of the histamine H₁ receptor (H1R) antagonists (antihistamines), promethazine (PMZ), orphenadrine (ORP), chlorpheniramine (CLP), pyrilamine (PYR), diphenhydramine (DPH), citerizine (CTZ), and triprolidine (TRP) on the functional properties of the cloned α7 subunit of the human nicotinic acetylcholine receptor expressed in Xenopus oocytes were investigated. Antihistamines inhibited the α7-nicotinic acetylcholine receptor in the order PYR>CLP>TRP>PMZ>ORP≥DPH≥CTZ. Among the antihistamines, PYR showed the highest reversible inhibition of acetylcholine (100 µM)-induced responses with IC₅₀ of 6.2 µM. PYR-induced inhibition was independent of the membrane potential and could not be reversed by increasing the concentration of acetylcholine. Specific binding of [¹²⁵I] α-bungarotoxin, a selective antagonist for α7-nicotinic acetylcholine receptor, was not changed in the presence of PYR suggesting a non-competitive inhibition of nicotinic receptors. In line with functional experiments, docking studies indicated that PYR can potentially bind allosterically with the α7 transmembrane domain. Our results indicate that the H₂-H₄ receptor antagonists tested in this study (10 µM) showed negligible inhibition of α7-nicotinic acetylcholine receptors. On the other hand, H₁ receptor antagonists inhibited the function of human α7-nicotinic acetylcholine receptor, with varying potencies. These results emphasize the importance of α7-nicotinic acetylcholine receptor for future pharmacological/toxicological profiling.
Collapse
Affiliation(s)
- Bassem Sadek
- Laboratory of Functional Lipidomics, Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, UAE University, Abu Dhabi, Al Ain, United Arab Emirates
| | - Seyedeh Soha Khanian
- Laboratory of Functional Lipidomics, Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, UAE University, Abu Dhabi, Al Ain, United Arab Emirates
| | - Abrar Ashoor
- Laboratory of Functional Lipidomics, Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, UAE University, Abu Dhabi, Al Ain, United Arab Emirates
| | - Tatiana Prytkova
- Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA
| | - Mohammad A Ghattas
- College of Pharmacy, Al Ain University of Science and Technology, Al Ain, United Arab Emirates
| | - Noor Atatreh
- College of Pharmacy, Al Ain University of Science and Technology, Al Ain, United Arab Emirates
| | - Syed M Nurulain
- Laboratory of Functional Lipidomics, Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, UAE University, Abu Dhabi, Al Ain, United Arab Emirates
| | - Keun-Hang Susan Yang
- Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA
| | - Frank Christopher Howarth
- Department of Physiology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Murat Oz
- Laboratory of Functional Lipidomics, Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, UAE University, Abu Dhabi, Al Ain, United Arab Emirates.
| |
Collapse
|
8
|
Ashoor A, Nordman JC, Veltri D, Yang KHS, Shuba Y, Al Kury L, Sadek B, Howarth FC, Shehu A, Kabbani N, Oz M. Menthol inhibits 5-HT3 receptor-mediated currents. J Pharmacol Exp Ther 2013; 347:398-409. [PMID: 23965380 DOI: 10.1124/jpet.113.203976] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The effects of alcohol monoterpene menthol, a major active ingredient of the peppermint plant, were tested on the function of human 5-hydroxytryptamine type 3 (5-HT3) receptors expressed in Xenopus laevis oocytes. 5-HT (1 μM)-evoked currents recorded by two-electrode voltage-clamp technique were reversibly inhibited by menthol in a concentration-dependent (IC50 = 163 μM) manner. The effects of menthol developed gradually, reaching a steady-state level within 10-15 minutes and did not involve G-proteins, since GTPγS activity remained unaltered and the effect of menthol was not sensitive to pertussis toxin pretreatment. The actions of menthol were not stereoselective as (-), (+), and racemic menthol inhibited 5-HT3 receptor-mediated currents to the same extent. Menthol inhibition was not altered by intracellular 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid injections and transmembrane potential changes. The maximum inhibition observed for menthol was not reversed by increasing concentrations of 5-HT. Furthermore, specific binding of the 5-HT3 antagonist [(3)H]GR65630 was not altered in the presence of menthol (up to 1 mM), indicating that menthol acts as a noncompetitive antagonist of the 5-HT3 receptor. Finally, 5-HT3 receptor-mediated currents in acutely dissociated nodose ganglion neurons were also inhibited by menthol (100 μM). These data demonstrate that menthol, at pharmacologically relevant concentrations, is an allosteric inhibitor of 5-HT3 receptors.
Collapse
Affiliation(s)
- Abrar Ashoor
- Laboratory of Functional Lipidomics, Departments of Pharmacology (A.A., L.A.K., B.S., M.O.) and Physiology (F.C.H.), College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates; Department of Molecular Neuroscience (J.C.N., N.K.), School of Systems Biology (D.V.), and Department of Computer Science (A.S.), George Mason University, Fairfax, Virginia; International Center of Molecular Physiology of the National Academy of Sciences of Ukraine, Kiev, Ukraine (Y.S.); and Department of Biological Sciences, Schmid College of Science and Engineering, Chapman University, Orange, California (K.-H.S.Y.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Mahgoub M, Keun-Hang SY, Sydorenko V, Ashoor A, Kabbani N, Al Kury L, Sadek B, Howarth CF, Isaev D, Galadari S, Oz M. Effects of cannabidiol on the function of α7-nicotinic acetylcholine receptors. Eur J Pharmacol 2013; 720:310-9. [PMID: 24140434 DOI: 10.1016/j.ejphar.2013.10.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 09/16/2013] [Accepted: 10/07/2013] [Indexed: 11/18/2022]
Abstract
The effects of cannabidiol (CBD), a non-psychoactive ingredient of cannabis plant, on the function of the cloned α7 subunit of the human nicotinic acetylcholine (α7 nACh) receptor expressed in Xenopus oocytes were tested using the two-electrode voltage-clamp technique. CBD reversibly inhibited ACh (100 μM)-induced currents with an IC50 value of 11.3 µM. Other phytocannabinoids such as cannabinol and Δ(9)-tetrahydrocannabinol did not affect ACh-induced currents. CBD inhibition was not altered by pertussis toxin treatment. In addition, CBD did not change GTP-γ-S binding to the membranes of oocytes injected with α7 nACh receptor cRNA. The effect of CBD was not dependent on the membrane potential. CBD (10 µM) did not affect the activity of endogenous Ca(2+)-dependent Cl(-) channels, since the extent of inhibition by CBD was unaltered by intracellular injection of the Ca(2+) chelator BAPTA and perfusion with Ca(2+)-free bathing solution containing 2mM Ba(2+). Inhibition by CBD was not reversed by increasing ACh concentrations. Furthermore, specific binding of [(125)I] α-bungarotoxin was not inhibited by CBD (10 µM) in oocytes membranes. Using whole cell patch clamp technique in CA1 stratum radiatum interneurons of rat hippocampal slices, currents induced by choline, a selective-agonist of α7-receptor induced currents were also recoded. Bath application of CBD (10 µM) for 10 min caused a significant inhibition of choline induced currents. Finally, in hippocampal slices, [(3)H] norepinephrine release evoked by nicotine (30 µM) was also inhibited by 10 µM CBD. Our results indicate that CBD inhibits the function of the α7-nACh receptor.
Collapse
Affiliation(s)
- Mohamed Mahgoub
- Laboratory of Functional Lipidomics, Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Abu Dhabi, Al Ain, United Arab Emirates
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ashoor A, Nordman JC, Veltri D, Yang KHS, Al Kury L, Shuba Y, Mahgoub M, Howarth FC, Sadek B, Shehu A, Kabbani N, Oz M. Menthol binding and inhibition of α7-nicotinic acetylcholine receptors. PLoS One 2013; 8:e67674. [PMID: 23935840 PMCID: PMC3720735 DOI: 10.1371/journal.pone.0067674] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/21/2013] [Indexed: 11/27/2022] Open
Abstract
Menthol is a common compound in pharmaceutical and commercial products and a popular additive to cigarettes. The molecular targets of menthol remain poorly defined. In this study we show an effect of menthol on the α7 subunit of the nicotinic acetylcholine (nACh) receptor function. Using a two-electrode voltage-clamp technique, menthol was found to reversibly inhibit α7-nACh receptors heterologously expressed in Xenopus oocytes. Inhibition by menthol was not dependent on the membrane potential and did not involve endogenous Ca2+-dependent Cl− channels, since menthol inhibition remained unchanged by intracellular injection of the Ca2+ chelator BAPTA and perfusion with Ca2+-free bathing solution containing Ba2+. Furthermore, increasing ACh concentrations did not reverse menthol inhibition and the specific binding of [125I] α-bungarotoxin was not attenuated by menthol. Studies of α7- nACh receptors endogenously expressed in neural cells demonstrate that menthol attenuates α7 mediated Ca2+ transients in the cell body and neurite. In conclusion, our results suggest that menthol inhibits α7-nACh receptors in a noncompetitive manner.
Collapse
Affiliation(s)
- Abrar Ashoor
- Departments of Pharmacology Laboratory of Functional Lipidomics, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Jacob C. Nordman
- Department of Molecular Neuroscience, George Mason University, Fairfax, Virginia, United States of America
| | - Daniel Veltri
- School of Systems Biology, George Mason University, Fairfax, Virginia, United States of America
| | - Keun-Hang Susan Yang
- Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Lina Al Kury
- Departments of Pharmacology Laboratory of Functional Lipidomics, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Yaroslav Shuba
- Departments of Pharmacology Laboratory of Functional Lipidomics, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Mohamed Mahgoub
- Departments of Pharmacology Laboratory of Functional Lipidomics, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Frank C. Howarth
- Department of Physiology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Bassem Sadek
- Departments of Pharmacology Laboratory of Functional Lipidomics, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Amarda Shehu
- Department of Computer Science, George Mason University, Fairfax, Virginia, United States of America
| | - Nadine Kabbani
- Department of Molecular Neuroscience, George Mason University, Fairfax, Virginia, United States of America
| | - Murat Oz
- Departments of Pharmacology Laboratory of Functional Lipidomics, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
- * E-mail:
| |
Collapse
|
11
|
Effects of phenothiazine-class antipsychotics on the function of α7-nicotinic acetylcholine receptors. Eur J Pharmacol 2011; 673:25-32. [PMID: 22044918 DOI: 10.1016/j.ejphar.2011.10.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 10/03/2011] [Accepted: 10/11/2011] [Indexed: 11/22/2022]
Abstract
The effects of phenothiazine-class antipsychotics (chlorpromazine, fluphenazine, phenothiazine, promazine, thioridazine, and triflupromazine) upon the function of the cloned α₇ subunit of the human nicotinic acetylcholine receptor expressed in Xenopus oocytes were tested using the two-electrode voltage-clamp technique. Fluphenazine, thioridazine, triflupromazine, chlorpromazine, and promazine reversibly inhibited acetylcholine (100 μM)-induced currents with IC₅₀ values of 3.8; 5.8; 6.1; 10.6 and 18.3 μM, respectively. Unsubstituted phenothiazine did not have a significant effect up to a concentration of 30 μM. Inhibition was further characterized using fluphenazine, the strongest inhibitor. The effect of fluphenazine was not dependent on the membrane potential. Fluphenazine (10 μM) did not affect the activity of endogenous Ca²⁺-dependent Cl⁻ channels, since the extent of inhibition by fluphenazine was unaltered by intracellular injection of the Ca²⁺ chelator BAPTA and perfusion with Ca²⁺-free bathing solution containing 2 mM Ba²⁺. Inhibition by fluphenazine, but not by chlorpromazine was reversed by increasing acetylcholine concentrations. Furthermore, specific binding of [¹²⁵I] α-bungarotoxin, a radioligand selective for α₇-nicotinic acetylcholine receptor, was inhibited by fluphenazine (10 μM), but not by chlorpromazine in oocyte membranes. In hippocampal slices, epibatidine-evoked [³H] norepinephrine release was also inhibited by fluphenazine (10 μM) and chlorpromazine (10 μM). Our results indicate that phenothiazine-class typical antipsychotics inhibit, with varying potencies, the function of α₇-nicotinic acetylcholine receptor.
Collapse
|
12
|
Yang KH, Galadari S, Isaev D, Petroianu G, Shippenberg TS, Oz M. The nonpsychoactive cannabinoid cannabidiol inhibits 5-hydroxytryptamine3A receptor-mediated currents in Xenopus laevis oocytes. J Pharmacol Exp Ther 2010; 333:547-54. [PMID: 20160007 PMCID: PMC2872948 DOI: 10.1124/jpet.109.162594] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 01/14/2010] [Indexed: 02/02/2023] Open
Abstract
The effect of the plant-derived nonpsychotropic cannabinoid, cannabidiol (CBD), on the function of hydroxytryptamine (5-HT)3A receptors expressed in Xenopus laevis oocytes was investigated using two-electrode voltage-clamp techniques. CBD reversibly inhibited 5-HT (1 microM)-evoked currents in a concentration-dependent manner (IC50 = 0.6 microM). CBD (1 microM) did not alter specific binding of the 5-HT3A antagonist [3H]3-(5-methyl-1H-imidazol-4-yl)-1-(1-methylindol-3-yl)propan-1-one (GR65630), in oocytes expressing 5-HT3A receptors. In the presence of 1 microM CBD, the maximal 5-HT-induced currents were also inhibited. The EC50 values were 1.2 and 1.4 microM, in the absence and presence of CBD, indicating that CBD acts as a noncompetitive antagonist of 5-HT3 receptors. Neither intracellular BAPTA injection nor pertussis toxin pretreatment (5 microg/ml) altered the CBD-evoked inhibition of 5-HT-induced currents. CBD inhibition was inversely correlated with 5-HT3A expression levels and mean 5-HT3 receptor current density. Pretreatment with actinomycin D, which inhibits protein transcription, decreased the mean 5-HT3 receptor current density and increased the magnitude of CBD inhibition. These data demonstrate that CBD is an allosteric inhibitor of 5-HT3 receptors expressed in X. laevis oocytes. They further suggest that allosteric inhibition of 5-HT3 receptors by CBD may contribute to its physiological roles in the modulation of nociception and emesis.
Collapse
Affiliation(s)
- Keun-Hang Yang
- Department of Biological Sciences, Schmid College of Science, Chapman University, Orange, California, USA
| | | | | | | | | | | |
Collapse
|
13
|
Oz M, Yang KH, Dinc M, Shippenberg TS. The endogenous cannabinoid anandamide inhibits cromakalim-activated K+ currents in follicle-enclosed Xenopus oocytes. J Pharmacol Exp Ther 2007; 323:547-54. [PMID: 17682128 DOI: 10.1124/jpet.107.125336] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The effect of the endogenous cannabinoid anandamide on K(+) currents activated by the ATP-sensitive potassium (K(ATP)) channel opener cromakalim was investigated in follicle-enclosed Xenopus oocytes using the two-electrode voltage-clamp technique. Anandamide (1-90 microM) reversibly inhibited cromakalim-induced K(+) currents, with an IC(50) value of 8.1 +/- 2 microM. Inhibition was noncompetitive and independent of membrane potential. Coapplication of anandamide with the cannabinoid type 1 (CB(1)) receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride (SR 141716A) (1 microM), the CB(2) receptor antagonist N-[(1S)endo-1,3,3-trimethyl bicyclo heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528) (1 microM), or pertussis toxin (5 microg/ml) did not alter the inhibitory effect of anandamide, suggesting that known cannabinoid receptors are not involved in anandamide inhibition of K(+) currents. Similarly, neither the amidohydrolase inhibitor phenylmethylsulfonyl fluoride (0.2 mM) nor the cyclooxygenase inhibitor indomethacin (5 microM) affected anandamide inhibition of K(+) currents, suggesting that the effects of anandamide are not mediated by its metabolic products. In radioligand binding studies, anandamide inhibited the specific binding of the K(ATP) ligand [(3)H]glibenclamide in the oocyte microsomal fractions, with an IC(50) value of 6.3 +/- 0.4 microM. Gonadotropin-induced oocyte maturation and the cromakalim-acceleration of progesterone-induced oocyte maturation were significantly inhibited in the presence of 10 microM anandamide. Collectively, these results indicate that cromakalim-activated K(+) currents in follicular cells of Xenopus oocytes are modulated by anandamide via a cannabinoid receptor-independent mechanism and that the inhibition of these channels by anandamide alters the responsiveness of oocytes to gonadotropin and progesterone.
Collapse
Affiliation(s)
- Murat Oz
- National Institute on Drug Abuse/Intramural Research Program Integrative Neuroscience Section, 333 Cassell Dr., Baltimore, MD 21224, USA.
| | | | | | | |
Collapse
|
14
|
Kobayashi T, Nishizawa D, Iwamura T, Ikeda K. Inhibition by cocaine of G protein-activated inwardly rectifying K+ channels expressed in Xenopus oocytes. Toxicol In Vitro 2007; 21:656-64. [PMID: 17329078 DOI: 10.1016/j.tiv.2007.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 12/13/2006] [Accepted: 01/05/2007] [Indexed: 11/19/2022]
Abstract
Cocaine, a commonly abused psychostimulant, interacts with not only transporters for dopamine, serotonin and norepinephrine but also several receptors and channels. However, the molecular mechanisms underlying the various effects of cocaine remain to be clarified. Using the Xenopus oocyte expression assay, we investigated the effects of cocaine on G protein-activated inwardly rectifying K+ (GIRK) channels, which regulate neuronal excitability and the heart rate. In oocytes injected with mRNAs for GIRK1/GIRK2, GIRK2 or GIRK1/GIRK4 subunits, cocaine reversibly reduced basal GIRK inward currents. The inhibition by cocaine at the toxic levels was concentration-dependent, but voltage-independent and time-independent during each voltage pulse. However, methylphenidate, methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA) at their toxic concentrations had little effect on the channels. Additionally, Kir1.1 and Kir2.1 channels were insensitive to all of the drugs. The inhibition by cocaine, which exists mainly in a protonated form at pH 7.4, was not affected by extracellular pH 9, at which the proportion of the uncharged form increases, suggesting the inhibition by both forms with similar effectiveness, and at physiological pH the effect being predominantly due to the protonated cocaine. Our results suggest that inhibition of GIRK channels by cocaine may contribute to some of its toxic effects.
Collapse
Affiliation(s)
- Toru Kobayashi
- Division of Psychobiology, Tokyo Institute of Psychiatry, 2-1-8 Kamikitazawa, Setagaya-ku, Tokyo 156-8585, Japan.
| | | | | | | |
Collapse
|
15
|
Wu SN, Chang HD, Sung RJ. Cocaine-induced inhibition of ATP-sensitive K+ channels in rat ventricular myocytes and in heart-derived H9c2 cells. Basic Clin Pharmacol Toxicol 2006; 98:510-7. [PMID: 16635111 DOI: 10.1111/j.1742-7843.2006.pto_354.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cocaine use may cause coronary artery spasm and acute myocardial ischaemia/infarction. However, its effects on ATP-sensitive K+ (KATP) channel, an ion channel responsible for ischaemic preconditioning, remain unknown. In isolated rat ventricular myocytes with whole-cell experiments, cocaine can reverse action potential shortening and increased K+ current caused by the openers of ATP-sensitive K+ (KATP) channels. In inside-out patches, cocaine applied to intracellular surface suppressed KATP-channel activity in a concentration-dependent manner with an IC50 value of 9.2 microM; however, it did not modify the single-channel conductance of this channel. The change in the kinetic behaviour of KATP channels caused by cocaine is primarily the result of an increase in mean closed time and a decrease in mean open time. Cocaine-induced inhibition of KATP channels is independent of change in intracellular ATP concentrations. In heart-derived H9c2 cells, cocaine is also capable of suppressing KATP-channel activity. The present study provides evidence that cocaine can produce a depressant action on KATP channels in cardiac myocytes, and thus disturb ischaemic preconditioning in clinical settings.
Collapse
Affiliation(s)
- Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Hospital, Tainan, Taiwan
| | | | | |
Collapse
|
16
|
Chen YH, Lin CH, Lin PL, Tsai MC. Cocaine elicits action potential bursts in a central snail neuron: The role of delayed rectifying K+ current. Neuroscience 2006; 138:257-80. [PMID: 16377093 DOI: 10.1016/j.neuroscience.2005.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 10/07/2005] [Accepted: 11/02/2005] [Indexed: 12/17/2022]
Abstract
The effects of cocaine were studied in an identifiable RP4 neuron of the African snail, Achatina fulica Ferussac, using the two-electrode voltage-clamp method. The RP4 neuron generated spontaneous action potentials and bath application of cocaine (0.3-1 mM) reversibly elicited action potential bursts of the central RP4 neuron in a concentration-dependent manner. The action potential bursts were not blocked when neurons were immersed in high-Mg(2+)solution, Ca(2+)-free solution, nor after continuous perfusion with atropine, d-tubocurarine, propranolol, prazosin, haloperidol, or sulpiride. Similarly, the action potential bursts were not abolished by pretreatment with N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride, (9S,10S,12R)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i][1,6]benzodiazocine-10-carboxylic acid hexyl ester or anisomycin. Injection of hyperpolarizing current at an intensity of greater than 2 nA effectively suppressed the cocaine-elicited action potential bursts and no postsynaptic potentials were observed under these conditions. These results suggest that the generation of action potential bursts elicited by cocaine was not due to (1) the synaptic effects of neurotransmitters, (2) the cholinergic, adrenergic or dopaminergic receptors of the excitable membrane, or (3) the cAMP second messengers and new protein synthesis of the RP4 neuron. Notably, the induction of action potential bursts was blocked by pretreatment with 1-[6-[((17beta)-3-methoxyestra-1,3,5[10]-trien-17-yl)amino]hexyl]-1H-pyrrole-2,5-dione. Voltage-clamp studies conducted on the RP4 neuron revealed that cocaine at 0.3 mM decreased (1) the Ca(2+) current, (2) the delayed rectifying K(+) current, (3) the fast-inactivating K(+) current and (4) the Ca(2+)-activated K(+) current, but had no remarkable effects on the Na(+) current. Perfusion with Ca(2+)-free solution, which may abolish the Ca(2+) current and Ca(2+)-activated K(+) current, did not cause any bursts of action potentials in control RP4 neurons. Application of 4-aminopyridine, an inhibitor of fast-inactivating K(+) current, and paxilline, an inhibitor of Ca(2+)-activated K(+) current, failed to elicit action potential bursts, whereas tetraethylammonium chloride, a blocker of Ca(2+)-activated K(+) current and delayed rectifying K(+) current, and tacrine, an inhibitor of delayed rectifying K(+) current, successfully elicited action potential bursts. Further, while 1-[6-[((17beta)-3-methoxyestra-1,3,5[10]-trien-17-yl)amino]hexyl]-1H-pyrrole-2,5-dione did not affect the delayed rectifying K(+) current of the RP4 neuron, 1-[6-[((17beta)-3-methoxyestra-1,3,5[10]-trien-17-yl)amino]hexyl]-1H-pyrrole-2,5-dione decreased the inhibitory effect of cocaine on the delayed rectifying K(+) current. It is concluded that cocaine elicits action potential bursts in the central snail RP4 neuron and that the effect is closely related to the inhibitory effects on the delayed rectifying K(+) current.
Collapse
Affiliation(s)
- Y-H Chen
- Department of Nursing, Yuan-Pei University of Science and Technology, No.306, Yuan-Pei Road, Hsinchu, Taiwan.
| | | | | | | |
Collapse
|