1
|
Lichtenegger M, Stockner T, Poteser M, Schleifer H, Platzer D, Romanin C, Groschner K. A novel homology model of TRPC3 reveals allosteric coupling between gate and selectivity filter. Cell Calcium 2013; 54:175-85. [PMID: 23800762 DOI: 10.1016/j.ceca.2013.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 05/27/2013] [Accepted: 05/30/2013] [Indexed: 01/09/2023]
Abstract
Utilizing a novel molecular model of TRPC3, based on the voltage-gated sodium channel from Arcobacter butzleri (Na(V)AB) as template, we performed structure-guided mutagenesis experiments to identify amino acid residues involved in divalent permeation and gating. Substituted cysteine accessibility screening within the predicted selectivity filter uncovered amino acids 629-631 as the narrowest part of the permeation pathway with an estimated pore diameter of < 5.8Å. E630 was found to govern not only divalent permeability but also sensitivity of the channel to block by ruthenium red. Mutations in a hydrophobic cluster at the cytosolic termini of transmembrane segment 6, corresponding to the S6 bundle crossing structure in Na(V)AB, distorted channel gating. Removal of a large hydrophobic residue (I667A or I667E) generated channels with approximately 60% constitutive activity, suggesting I667 as part of the dynamic structure occluding the permeation path. Destabilization of the gate was associated with reduced Ca2+ permeability, altered cysteine cross-linking in the selectivity filter and promoted channel block by ruthenium red. Collectively, we present a structural model of the TRPC3 permeation pathway and localize the channel's selectivity filter and the occluding gate. Moreover, we provide evidence for allosteric coupling between the gate and the selectivity filter in TRPC3.
Collapse
Affiliation(s)
- Michaela Lichtenegger
- Institute of Pharmaceutical Sciences--Pharmacology and Toxicology, University of Graz, A-8010 Graz, Austria
| | | | | | | | | | | | | |
Collapse
|
2
|
Roedding A, Tong S, Au-Yeung W, Li P, Warsh J. Chronic oxidative stress modulates TRPC3 and TRPM2 channel expression and function in rat primary cortical neurons: Relevance to the pathophysiology of bipolar disorder. Brain Res 2013; 1517:16-27. [DOI: 10.1016/j.brainres.2013.04.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 03/09/2013] [Accepted: 04/11/2013] [Indexed: 10/26/2022]
|
3
|
Roedding AS, Gao AF, Au-Yeung W, Scarcelli T, Li PP, Warsh JJ. Effect of oxidative stress on TRPM2 and TRPC3 channels in B lymphoblast cells in bipolar disorder. Bipolar Disord 2012; 14:151-61. [PMID: 22420591 DOI: 10.1111/j.1399-5618.2012.01003.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Recent findings implicate the calcium-permeable nonselective ion channels transient receptor potential (TRP) melastatin subtype 2 (TRPM2) and canonical subtype 3 (TRPC3) in the pathogenesis of bipolar disorder (BD). These channels are involved in calcium and oxidative stress signaling, both of which are disrupted in BD. Thus, we sought to determine if these channels are differentially affected by oxidative stress in cell lines of BD patient origin. METHODS B lymphoblast cell lines (BLCLs) from bipolar I disorder (BD-I) patients (n = 6) and healthy controls (n = 5) were challenged with the oxidative stressor rotenone (2.5 μM and 10 μM) or vehicle for acute (24 hours) and chronic (four days) intervals. Cell viability was measured using propidium iodide, while TRPM2- and TRPC3-mediated calcium fluxes were measured in the presence of their respective activators (H(2) O(2) and 1-oleoyl-2-acetyl-sn-glycerol) using Fluo-4. Changes in TRPM2 and TRPC3 expression levels were determined by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and Western blotting. RESULTS Cell viability decreased with increasing dose and duration of rotenone treatment, with BD-I patient BLCLs more susceptible than controls acutely (p < 0.001). A dose-dependent decrease in TRPC3 protein expression occurred after chronic (24%, p = 0.008) but not acute rotenone treatment. Interestingly, H(2) O(2) -provoked TRPM2-dependent calcium fluxes revealed an interaction between the effects of stressor addition and diagnostic subject group (p = 0.003). CONCLUSIONS These data support an important role for TRPM2 and TRPC3 in sensing and responding to oxidative stress and in transducing oxidative stress signaling to intracellular calcium homeostasis and cellular stress responses, all of which have been implicated in the pathophysiology of BD.
Collapse
Affiliation(s)
- Angela S Roedding
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
4
|
Groschner K. Polymodal TRPC signaling: Emerging role in phenotype switching and tissue remodeling. Commun Integr Biol 2011; 3:393-5. [PMID: 21057623 DOI: 10.4161/cib.3.5.12131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 04/21/2010] [Indexed: 12/17/2022] Open
Abstract
TRPC proteins have been implicated in a large array of Ca(2+) signaling processes and are considered as pore-forming subunits of unique polymodal channel sensors. The mechanisms of TRPC activation are so far incompletely understood but appear to involve a concert of signals that are generated typically downstream of receptor-mediated activation of phospholipase C. Specifically for the TRPC1/4/5 subfamily the activating scenario is ill-defined and appears enigmatic due to the observation of multiple modes of activation. TRPC4 was initially described as a store-operated cation channel and was repeatedly proposed as a pivotal element of the store-operated signaling pathways of various tissues. However, classical reconstitution of TRPC4 complexes in expression systems as well as recent knock-down strategies provided evidence against store-dependent regulation of this channel and raised considerable doubt in its proposed prominent role agonist-induced Ca(2+) signaling. Recent analysis of the function of TRPC4 in vascular endothelial cells of divergent phenotype revealed a novel aspect of TRPC signaling, extending the current concept of TRPC regulation by a phenotype-dependent switch between Ca(2+) transport and a potential intracellular scaffold function of the TRPC protein.
Collapse
Affiliation(s)
- Klaus Groschner
- Institute of Pharmaceutical Sciences-Pharmacology and Toxicology; University of Graz; Graz, Austria
| |
Collapse
|
5
|
Woodard GE, López JJ, Jardín I, Salido GM, Rosado JA. TRPC3 regulates agonist-stimulated Ca2+ mobilization by mediating the interaction between type I inositol 1,4,5-trisphosphate receptor, RACK1, and Orai1. J Biol Chem 2009; 285:8045-53. [PMID: 20022948 DOI: 10.1074/jbc.m109.033605] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
There is a body of evidence suggesting that Ca(2+) handling proteins assemble into signaling complexes required for a fine regulation of Ca(2+) signals, events that regulate a variety of critical cellular processes. Canonical transient receptor potential (TRPC) and Orai proteins have both been proposed to form Ca(2+)-permeable channels mediating Ca(2+) entry upon agonist stimulation. A number of studies have demonstrated that inositol 1,4,5-trisphosphate receptors (IP(3)Rs) interact with plasma membrane TRPC channels; however, at present there is no evidence supporting the interaction between Orai proteins and IP(3)Rs. Here we report that treatment with thapsigargin or cellular agonists results in association of Orai1 with types I and II IP(3)Rs. In addition, we have found that TRPC3, RACK1 (receptor for activated protein kinase C-1), and STIM1 (stromal interaction molecule 1) interact with Orai1 upon stimulation with agonists. TRPC3 expression silencing prevented both the interaction of Orai1 with TRPC3 and, more interestingly, the association of Orai1 with the type I IP(3)R, but not with the type II IP(3)R, thus suggesting that TRPC3 selectively mediates interaction between Orai1 and type I IP(3)R. In addition, TRPC3 expression silencing attenuated ATP- and CCh-stimulated interaction between RACK1 and the type I IP(3)R, as well as Ca(2+) release and entry. In conclusion, our results indicate that agonist stimulation results in the formation of an Orai1-STIM1-TRPC3-RACK1-type I IP(3)R complex, where TRPC3 plays a central role. This Ca(2+) signaling complex might be important for both agonist-induced Ca(2+) release and entry.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- NIDDK, National Institutes of Health, Bethesda, Maryland 20892-2560, USA
| | | | | | | | | |
Collapse
|
6
|
Pathophysiological implications of transient receptor potential channels in vascular function. Curr Opin Nephrol Hypertens 2008; 17:193-8. [DOI: 10.1097/mnh.0b013e3282f52467] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Perova T, Wasserman MJ, Li PP, Warsh JJ. Hyperactive intracellular calcium dynamics in B lymphoblasts from patients with bipolar I disorder. Int J Neuropsychopharmacol 2008; 11:185-96. [PMID: 17681086 DOI: 10.1017/s1461145707007973] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Substantial evidence implicates abnormalities of intracellular calcium (Ca2+) dynamics in the pathophysiology of bipolar disorder (BD). However, the precise mechanisms underlying such disturbances are poorly understood. To further elaborate the nature of altered intracellular Ca2+ signalling dynamics that occur in BD, we examined receptor- and store-operated Ca2+ responses in B lymphoblast cell lines (BLCLs), which have been found in earlier studies to 'report' BD-associated disturbances. Basal Ca2+ concentrations ([Ca2+]B), and lysophosphatidic acid (LPA)- and thapsigargin-stimulated Ca2+ responses were determined in BLCLs from 52 BD-I patients and 30 healthy comparison subjects using fura-2, and ratiometric fluorometry. ANOVA revealed a significant effect of diagnosis, but not gender, on [Ca2+]B (F1,63=4.4, p=0.04) and the rate of rise (F1,63=5.2, p=0.03) of LPA-stimulated Ca2+ responses in BLCLs from patients compared with those from healthy subjects. A significant genderxdiagnosis interaction on the LPA-induced rate of rise (F1,63=4.6, p=0.03) was accounted for by a faster rate of rise (97%) in BLCLs from BD-I males compared with healthy males but not in those from female patients compared with healthy females. A genderxdiagnosis interaction in thapsigargin-evoked Ca2+ influx (F1,61=3.8, p=0.05) resulted from a significantly higher peak [Ca2+]influx (24%) in BLCLs from female compared with male patients. The results suggest more rapid LPA-stimulated Ca2+ responses occur in BLCLs from BD-I patients compared with controls, which are probably mediated, in part, by canonical transient receptor potential type 3 (TRPC3)-like channels. Additionally, this study highlights sex-dependent differences that can occur in the pathophysiological disturbances involved in BD.
Collapse
Affiliation(s)
- Tatiana Perova
- Laboratory of Cellular and Molecular Pathophysiology, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
8
|
|
9
|
Lemonnier L, Trebak M, Putney JW. Complex regulation of the TRPC3, 6 and 7 channel subfamily by diacylglycerol and phosphatidylinositol-4,5-bisphosphate. Cell Calcium 2007; 43:506-14. [PMID: 17942152 DOI: 10.1016/j.ceca.2007.09.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 08/06/2007] [Accepted: 09/05/2007] [Indexed: 10/22/2022]
Abstract
TRPC3, 6 and 7 channels constitute a subgroup of non-selective, calcium-permeable cation channels within the TRP superfamily that are activated by products of phospholipase C-mediated breakdown of phosphatidylinositol-4,5-bisphosphate (PIP(2)). A number of ion channels, including other members of the TRP superfamily, are regulated directly by PIP(2). However, there is little information on the regulation of the TRPC channel subfamily by PIP(2). Pretreatment of TRPC7-expressing cells with a drug that blocks the synthesis of polyphosphoinositides inhibited the ability of the synthetic diacylglycerol, oleyl-acetyl glycerol, to activate TRPC7. In excised patches, TRPC7 channels were robustly activated by application of PIP(2) or ATP, but not by inositol 1,4,5-trisphosphate. Similar results were obtained with TRPC6 and TRPC3, although the effects of PIP(2) were somewhat less and with TRPC3 there was no significant effect of ATP. In the cell-attached configuration, TRPC7 channels could be activated by the synthetic diacylglycerol analog, oleyl-acetyl glycerol. However, this lipid mediator did not activate TRPC7 channels in excised patches. In addition, channel activation by PIP(2) in excised patches was significantly greater than that observed with oleyl-acetyl glycerol in the cell-attached configuration. These findings reveal complex regulation of TRPC channels by lipid mediators. The results also reveal for the first time direct activation by PIP(2) of members of the TRPC ion channel subfamily.
Collapse
Affiliation(s)
- Loïc Lemonnier
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences-NIH, Research Triangle Park, NC 27709, United States.
| | | | | |
Collapse
|
10
|
Suzuki F, Morishima S, Tanaka T, Muramatsu I. Snapin, a new regulator of receptor signaling, augments alpha1A-adrenoceptor-operated calcium influx through TRPC6. J Biol Chem 2007; 282:29563-73. [PMID: 17684020 DOI: 10.1074/jbc.m702063200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Activation of G(q)-protein-coupled receptors, including the alpha(1A)-adrenoceptor (alpha(1A)-AR), causes a sustained Ca(2+) influx via receptor-operated Ca(2+) (ROC) channels, following the transient release of intracellular Ca(2+). Transient receptor potential canonical (TRPC) channel is one of the candidate proteins constituting the ROC channels, but the precise mechanism linking receptor activation to increased influx of Ca(2+) via TRPCs is not yet fully understood. We identified Snapin as a protein interacting with the C terminus of the alpha(1A)-AR. In receptor-expressing PC12 cells, co-transfection of Snapin augmented alpha(1A)-AR-stimulated sustained increases in intracellular Ca(2+) ([Ca(2+)](i)) via ROC channels. By altering the Snapin binding C-terminal domain of the alpha(1A)-AR or by reducing cellular Snapin with short interfering RNA, the sustained increase in [Ca(2+)](i) in Snapin-alpha(1A)-AR co-expressing PC12 cells was attenuated. Snapin co-immunoprecipitated with TRPC6 and alpha(1A)-AR, and these interactions were augmented upon alpha(1A)-AR activation, increasing the recruitment of TRPC6 to the cell surface. Our data suggest a new receptor-operated signaling mechanism where Snapin links the alpha(1A)-AR to TRPC6, augmenting Ca(2+) influx via ROC channels.
Collapse
Affiliation(s)
- Fumiko Suzuki
- Division of Pharmacology, Department of Biochemistry and Bioinformative Sciences, School of Medicine, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui 910-1193, Japan
| | | | | | | |
Collapse
|
11
|
Abstract
This chapter reviews recent evidence indicating that canonical or classical transient receptor potential (TRPC) channels are directly or indirectly mechanosensitive (MS) and can therefore be designated as mechano-operated channels (MOCs). The MS functions of TRPCs may be mechanistically related to their better known functions as store-operated and receptor-operated channels (SOCs and ROCs). Mechanical forces may be conveyed to TRPC channels through the "conformational coupling" mechanism that transmits information regarding the status of internal Ca(2+) stores. All TRPCs are regulated by receptors coupled to phospholipases that are themselves MS and can regulate channels via lipidic second messengers. Accordingly, there may be several nonexclusive mechanisms by which mechanical forces may regulate TRPC channels, including direct sensitivity to bilayer mechanics, physical coupling to internal membranes and/or cytoskeletal proteins, and sensitivity to lipidic second messengers generated by MS enzymes. Various strategies that can be used for separating out different MS-gating mechanisms and their possible role in specific TRPCs are discussed.
Collapse
Affiliation(s)
- Owen P Hamill
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Rosario Maroto
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555
| |
Collapse
|
12
|
Michel MC. Transient receptor potential (TRP) channels as drug targets. Naunyn Schmiedebergs Arch Pharmacol 2006; 373:271-2. [PMID: 16705436 DOI: 10.1007/s00210-006-0071-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Martin C Michel
- Department of Pharmacology and Pharmacotherapy, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Inoue R, Jensen LJ, Shi J, Morita H, Nishida M, Honda A, Ito Y. Transient receptor potential channels in cardiovascular function and disease. Circ Res 2006; 99:119-31. [PMID: 16857972 DOI: 10.1161/01.res.0000233356.10630.8a] [Citation(s) in RCA: 296] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sustained elevation in the intracellular Ca2+ concentration via Ca2+ influx, which is activated by a variety of mechanisms, plays a central regulatory role for cardiovascular functions. Recent molecular biological research has disclosed an unexpectedly diverse array of Ca(2+-entry channel molecules involved in this Ca2+ influx. These include more than ten transient receptor potential (TRP) superfamily members such as TRPC1, TRPC3-6, TRPV1, TRPV2, TRPV4, TRPM4, TRPM7, and polycystin (TRPP2). Most of them appear to be multimodally activated or modulated and show relevant features to both acute hemodynamic control and long-term remodeling of the cardiovascular system, and many of them have been found to respond not only to receptor stimulation but also to various forms of stimuli. There is good evidence to implicate TRPC1 in neointimal hyperplasia after vascular injury via store-depletion-operated Ca2+ entry. TRPC6 likely contributes to receptor-operated and mechanosensitive Ca2+ mobilizations, being involved in vasoconstrictor and myogenic responses and pulmonary arterial proliferation and its associated disease (idiopathic pulmonary arterial hypertension). Considerable evidence has also been accumulated for unique involvement of TRPV1 in blood flow/pressure regulation via sensory vasoactive neuropeptide release. New lines of evidence suggest that TRPV2 may act as a Ca2+-overloading pathway associated with dystrophic cardiomyopathy, TRPV4 as a mediator of endothelium-dependent hyperpolarization, TRPM7 as a proproliferative vascular Mg2+ entry channel, and TRPP2 as a Ca2+-entry channel requisite for vascular integrity. This review attempts to provide an overview of the current knowledge on TRP proteins and discuss their possible roles in cardiovascular functions and diseases.
Collapse
Affiliation(s)
- Ryuji Inoue
- Department of Physiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan.
| | | | | | | | | | | | | |
Collapse
|
14
|
Gudermann T, Flockerzi V. TRP channels as new pharmacological targets. Naunyn Schmiedebergs Arch Pharmacol 2005; 371:241-4. [PMID: 15756597 DOI: 10.1007/s00210-005-1029-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Heiner I, Radukina N, Eisfeld J, Kühn F, Lückhoff A. Regulation of TRPM2 channels in neutrophil granulocytes by ADP-ribose: a promising pharmacological target. Naunyn Schmiedebergs Arch Pharmacol 2005; 371:325-33. [PMID: 15841395 DOI: 10.1007/s00210-005-1033-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
TRPM2 channels play an important role in the activation process of neutrophil granulocytes. One mechanism of TRPM2 channel gating is the binding of intracellular ADP ribose (ADPR) to the Nudix box domain in the C-terminal tail of TRPM2. Intracellular Ca(2+), although not an activator of TRPM2 by its own, significantly enhances TRPM2 gating by ADPR. Stimulation of neutrophil granulocytes with the chemoattractant peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP) induces release of Ca(2+) ions from intracellular stores which in cooperation with endogenous ADPR levels enable Ca(2+) influx through TRPM2. Stimulation of the ectoenzyme CD38, a membrane-associated glycohydrolase with ADPR as main product, and uptake of ADPR into the cell may contribute to the effects of fMLP. Inhibition of ADPR production, of uptake and of binding to TRPM2 are all potential pharmacological principles by which a modulation of neutrophil function may become possible in future.
Collapse
Affiliation(s)
- Inka Heiner
- Institut für Physiologie, Medizinische Fakultät der Rheinisch-Westfälischen Technischen Hochschule, 52057, Aachen, Germany
| | | | | | | | | |
Collapse
|
16
|
Abstract
In recent years many new members of the family of TRP ion channels have been identified. These channels are classified into several subgroups and participate in many sensory and physiological functions. TRPV channels are important for the perception of pain, temperature sensing, osmotic regulation, and maintenance of calcium homeostasis, and much recent research concerns the identification of protein domains involved in mediating specific channel functions. Recent literature on TRPV channel subunit composition, protein domains required for subunit assembly, trafficking, and regulation will be reviewed and discussed.
Collapse
Affiliation(s)
- Barbara A Niemeyer
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, Gebäude 46, 66421, Homburg, Germany.
| |
Collapse
|
17
|
Zufall F. The TRPC2 ion channel and pheromone sensing in the accessory olfactory system. Naunyn Schmiedebergs Arch Pharmacol 2005; 371:245-50. [PMID: 15871013 DOI: 10.1007/s00210-005-1028-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The mammalian vomeronasal organ (VNO) has emerged as an excellent model to investigate the signaling mechanisms, mode of activation, biological function, and molecular evolution of transient receptor potential (TRP) channels in real neurons and real physiological systems. TRPC2, a member of the canonical TRPC subfamily, is highly localized to the dendritic tip of vomeronasal sensory neurons. Targeted deletion of the TRPC2 gene has established that TRPC2 plays a fundamental role in the detection of pheromonal signals by the VNO. TRPC2-deficient mice exhibit striking behavioral defects in the regulation of sexual and social behaviors. A novel Ca(2+)-permeable, diacylglycerol-activated cation channel found at the dendritic tip of vomeronasal neurons is severely defective in TRPC2 mutants, providing the first clear example of native diacylglycerol-gated cation channels in the mammalian nervous system. The TRPC2 gene has become an important marker for the evolution of VNO-dependent pheromone signaling in primates.
Collapse
Affiliation(s)
- F Zufall
- Department of Anatomy and Neurobiology and Program in Neuroscience, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201-1509, USA.
| |
Collapse
|
18
|
Dietrich A, Mederos y Schnitzler M, Kalwa H, Storch U, Gudermann T. Functional characterization and physiological relevance of the TRPC3/6/7 subfamily of cation channels. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2005; 371:257-65. [PMID: 15909153 DOI: 10.1007/s00210-005-1052-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The mammalian transient receptor potential (TRP) superfamily of cation channels can be divided into six major families. Among them, the "classical" or "canonical" TRPC family is most closely related to Drosophila TRP, the founding member of the superfamily. All seven channels of this family designated TRPC1-7 share the common property of activation through phospholipase C (PLC)-coupled receptors, but their gating by receptor- or store-operated mechanisms is still controversial. The TRPC3, 6, and 7 channels are 75% identical and are also gated by direct exposure to diacylglycerols (DAG). TRPC3, 6, and 7 interact physically and, upon coexpression, coassemble to form functional tetrameric channels. This review will focus on the TRPC3/6/7 subfamily and describe their functional properties and regulation as homomers obtained from overexpression studies in cell lines. It will also summarize their heteromultimerization potential in vitro and in vivo and will present preliminary data concerning their physiological functions analyzed in isolated tissues with downregulated channel activity and gene-deficient mouse models.
Collapse
Affiliation(s)
- Alexander Dietrich
- Institut für Pharmakologie und Toxikologie, Philipps-Universität Marburg, Karl-von-Frisch-Strasse 1, 35043, Marburg, Germany.
| | | | | | | | | |
Collapse
|