1
|
Modarres Mousavi SM, Alipour F, Noorbakhsh F, Jafarian M, Ghadipasha M, Gharehdaghi J, Kellinghaus C, Speckmann EJ, Stummer W, Khaleghi Ghadiri M, Gorji A. Clinical Correlation of Altered Molecular Signatures in Epileptic Human Hippocampus and Amygdala. Mol Neurobiol 2024; 61:725-752. [PMID: 37658249 PMCID: PMC10861640 DOI: 10.1007/s12035-023-03583-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 08/14/2023] [Indexed: 09/03/2023]
Abstract
Widespread alterations in the expression of various genes could contribute to the pathogenesis of epilepsy. The expression levels of various genes, including major inhibitory and excitatory receptors, ion channels, cell type-specific markers, and excitatory amino acid transporters, were assessed and compared between the human epileptic hippocampus and amygdala, and findings from autopsy controls. Moreover, the potential correlation between molecular alterations in epileptic brain tissues and the clinical characteristics of patients undergoing epilepsy surgery was evaluated. Our findings revealed significant and complex changes in the expression of several key regulatory genes in both the hippocampus and amygdala of patients with intractable epilepsy. The expression changes in various genes differed considerably between the epileptic hippocampus and amygdala. Different correlation patterns were observed between changes in gene expression and clinical characteristics, depending on whether the patients were considered as a whole or were subdivided. Altered molecular signatures in different groups of epileptic patients, defined within a given category, could be viewed as diagnostic biomarkers. Distinct patterns of molecular changes that distinguish these groups from each other appear to be associated with epilepsy-specific functional consequences.
Collapse
Affiliation(s)
| | - Fatemeh Alipour
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Farshid Noorbakhsh
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Maryam Jafarian
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Masoud Ghadipasha
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Jaber Gharehdaghi
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | | | - Erwin-Josef Speckmann
- Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Walter Stummer
- Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | | | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Department of Neuroscience, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Neonatal Clonazepam Administration Induced Long-Lasting Changes in GABA A and GABA B Receptors. Int J Mol Sci 2020; 21:ijms21093184. [PMID: 32366006 PMCID: PMC7246485 DOI: 10.3390/ijms21093184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 11/17/2022] Open
Abstract
Benzodiazepines (BZDs) are widely used in patients of all ages. Unlike adults, neonatal animals treated with BZDs exhibit a variety of behavioral deficits later in life; however, the mechanisms underlying these deficits are poorly understood. This study aims to examine whether administration of clonazepam (CZP; 1 mg/kg/day) in 7-11-day-old rats affects Gama aminobutyric acid (GABA)ergic receptors in both the short and long terms. Using RT-PCR and quantitative autoradiography, we examined the expression of the selected GABAA receptor subunits (α1, α2, α4, γ2, and δ) and the GABAB B2 subunit, and GABAA, benzodiazepine, and GABAB receptor binding 48 h, 1 week, and 2 months after treatment discontinuation. Within one week after CZP cessation, the expression of the α2 subunit was upregulated, whereas that of the δ subunit was downregulated in both the hippocampus and cortex. In the hippocampus, the α4 subunit was downregulated after the 2-month interval. Changes in receptor binding were highly dependent on the receptor type, the interval after treatment cessation, and the brain structure. GABAA receptor binding was increased in almost all of the brain structures after the 48-h interval. BZD-binding was decreased in many brain structures involved in the neuronal networks associated with emotional behavior, anxiety, and cognitive functions after the 2-month interval. Binding of the GABAB receptors changed depending on the interval and brain structure. Overall, the described changes may affect both synaptic development and functioning and may potentially cause behavioral impairment.
Collapse
|
3
|
Gravielle MC. Regulation of GABAA receptors by prolonged exposure to endogenous and exogenous ligands. Neurochem Int 2018; 118:96-104. [DOI: 10.1016/j.neuint.2018.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/22/2018] [Accepted: 05/30/2018] [Indexed: 02/08/2023]
|
4
|
Vlainić JV, Šuran J, Vlainić T, Vukorep AL. Probiotics as an Adjuvant Therapy in Major Depressive Disorder. Curr Neuropharmacol 2017; 14:952-958. [PMID: 27226112 PMCID: PMC5333591 DOI: 10.2174/1570159x14666160526120928] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/27/2015] [Accepted: 05/17/2016] [Indexed: 02/08/2023] Open
Abstract
Background Major depressive disorder is a common, debilitating psychiatric disorder, which originates from the interaction of susceptibility genes and noxious environmental events, in particular stressful events. It has been shown that dysregulation of hypothalamus-pituitary-adrenal (HPA) axis, imbalance between anti- and pro-inflammatory cytokines, depletion of neurotransmitters (serotonin, norepinephrine and/or dopamine) in the central nervous system, altered glutamatergic and GABAergic transmission have an important role in the pathogenesis of depression. Due to numerous diverse biological events included in the pathophysiology of depression a large number of antidepressant drugs exerting distinct pharmacological effects have been developed. Nevertheless, clinical needs are still not solved. Results Relatively new research strategies advanced the understanding of psychiatric illness and their connections with disturbances in gastrointestinal tract. The existence of bidirectional communication between the brain and the gut has been proven, and an increasing body of evidence supports the hypothesis that cognitive and emotional processes are influenced through the brain-gut axis. On the other hand, microbiome may influence brain function and even behavior giving to the specific microorganisms a psychobiotic potential. Conclusions In this review we discuss the possibilities of classical antidepressant drug treatment being supported with the psychobiotics/probiotic bacteria in patients suffering from major depressive disorder.
Collapse
|
5
|
Sikiric P, Seiwerth S, Rucman R, Kolenc D, Vuletic LB, Drmic D, Grgic T, Strbe S, Zukanovic G, Crvenkovic D, Madzarac G, Rukavina I, Sucic M, Baric M, Starcevic N, Krstonijevic Z, Bencic ML, Filipcic I, Rokotov DS, Vlainic J. Brain-gut Axis and Pentadecapeptide BPC 157: Theoretical and Practical Implications. Curr Neuropharmacol 2016; 14:857-865. [PMID: 27138887 PMCID: PMC5333585 DOI: 10.2174/1570159x13666160502153022] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/17/2016] [Accepted: 04/21/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Brain-gut interaction involves, among others, peptidergic growth factors which are native in GI tract and have strong antiulcer potency and thus could from periphery beneficially affect CNS-disorders. We focused on the stable gastric pentadecapeptide BPC 157, an antiulcer peptidergic agent, safe in inflammatory bowel disease trials and now in multiple sclerosis trial, native and stable in human gastric juice. METHODS Review of our research on BPC 157 in terms of brain-gut axis. RESULTS BPC 157 may serve as a novel mediator of Robert's cytoprotection, involved in maintaining of GI mucosa integrity, with no toxic effect. BPC 157 was successful in the therapy of GI tract, periodontitis, liver and pancreas lesions, and in the healing of various tissues and wounds. Stimulated Egr-1 gene, NAB2, FAK-paxillin and JAK-2 pathways are hitherto implicated. Initially corresponding beneficial central influence was seen when BPC 157 was given peripherally and a serotonin release in particular brain areas, mostly nigrostriatal, was changed. BPC 157 modulates serotonergic and dopaminergic systems, beneficially affects various behavioral disturbances that otherwise appeared due to specifically (over)stimulated/damaged neurotransmitters systems. Besides, BPC 157 has neuroprotective effects: protects somatosensory neurons; peripheral nerve regeneration appearent after transection; after traumatic brain injury counteracts the otherwise progressing course, in rat spinal cord compression with tail paralysis, axonal and neuronal necrosis, demyelination, cyst formation and rescues tail function in both short-terms and long-terms; after NSAIDs or insulin overdose or cuprizone encephalopathies were attenuated along with GI, liver and vascular injuries. CONCLUSION BPC 157, a gastric peptide, may serve as remedy in various CNS-disorders.
Collapse
Affiliation(s)
- Predrag Sikiric
- Department of Pharmacology and Pathology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pharmacology and Pathology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Rudolf Rucman
- Department of Pharmacology and Pathology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Danijela Kolenc
- Department of Pharmacology and Pathology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Lovorka Batelja Vuletic
- Department of Pharmacology and Pathology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Domagoj Drmic
- Department of Pharmacology and Pathology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Tihomir Grgic
- Department of Pharmacology and Pathology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Sanja Strbe
- Department of Pharmacology and Pathology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Goran Zukanovic
- Department of Pharmacology and Pathology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Dalibor Crvenkovic
- Department of Pharmacology and Pathology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Goran Madzarac
- Department of Pharmacology and Pathology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Iva Rukavina
- Department of Pharmacology and Pathology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Mario Sucic
- Department of Pharmacology and Pathology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Marko Baric
- Department of Pharmacology and Pathology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Neven Starcevic
- Department of Pharmacology and Pathology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Zoran Krstonijevic
- Department of Pharmacology and Pathology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Martina Lovric Bencic
- Department of Pharmacology and Pathology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Igor Filipcic
- Department of Pharmacology and Pathology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Dinko Stancic Rokotov
- Department of Pharmacology and Pathology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Josipa Vlainic
- Department of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
6
|
Gravielle MC. Activation-induced regulation of GABAA receptors: Is there a link with the molecular basis of benzodiazepine tolerance? Pharmacol Res 2015; 109:92-100. [PMID: 26733466 DOI: 10.1016/j.phrs.2015.12.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 12/01/2022]
Abstract
Benzodiazepines have been used clinically for more than 50 years to treat disorders such as insomnia, anxiety, and epilepsy, as well as to aid muscle relaxation and anesthesia. The therapeutic index for benzodiazepines if very high and the toxicity is low. However, their usefulness is limited by the development of either or both tolerance to most of their pharmacological actions and dependence. Tolerance develops at different rates depending on the pharmacological action, suggesting the existence of distinct mechanisms for each behavioral parameter. Alternatively, multiple mechanisms could coexist depending on the subtype of GABAA receptor expressed and the brain region involved. Because most of the pharmacological actions of benzodiazepines are mediated through GABAA receptor binding, adaptive alterations in the number, structure, and/or functions of these receptors may play an important role in the development of tolerance. This review is focused on the regulation of GABAA receptors induced by long-term benzodiazepine exposure and its relationship with the development of tolerance. Understanding the mechanisms behind benzodiazepine tolerance is critical for designing drugs that could maintain their efficacy during long-term treatments.
Collapse
Affiliation(s)
- María Clara Gravielle
- Instituto de Investigaciones Farmacológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina.
| |
Collapse
|
7
|
Rocha L, Alonso-Vanegas M, Martínez-Juárez IE, Orozco-Suárez S, Escalante-Santiago D, Feria-Romero IA, Zavala-Tecuapetla C, Cisneros-Franco JM, Buentello-García RM, Cienfuegos J. GABAergic alterations in neocortex of patients with pharmacoresistant temporal lobe epilepsy can explain the comorbidity of anxiety and depression: the potential impact of clinical factors. Front Cell Neurosci 2015; 8:442. [PMID: 25601827 PMCID: PMC4283637 DOI: 10.3389/fncel.2014.00442] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 12/08/2014] [Indexed: 01/12/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is a chronic neurodegenerative disease with a high prevalence of psychiatric disorders. Temporal neocortex contributes to either seizure propagation or generation in TLE, a situation that has been associated with alterations of the γ-amino-butyric acid (GABA) system. On the other hand, an impaired neurotransmission mediated by GABA in temporal neocortex has also been involved with the pathophysiology of psychiatric disorders. In spite of these situations, the role of the necortical GABA system in the comorbidity of TLE and mood disorders has not been investigated. The present study was designed to identify alterations in the GABA system such as binding to GABAA and GABAB receptors and benzodiazepine site, the tissue content of GABA and the expression of the mRNA encoding the α1–6, β1–3, and γ GABAA subunits, in the temporal neocortex of surgically treated patients with TLE with and without anxiety, and/or depression. Neocortex of patients with TLE and comorbid anxiety and/or depression showed increased expression of the mRNA encoding the γ2-subunit, reduced GABAB-induced G-protein activation in spite of elevated GABAB binding, and lower tissue content of GABA when compared to autopsy controls. Some of these changes significantly correlated with seizure frequency and duration of epilepsy. The results obtained suggest a dysfunction of the GABAergic neurotransmission in temporal neocortex of patients with TLE and comorbid anxiety and/or depression that could be also influenced by clinical factors such as seizure frequency and duration of illness.
Collapse
Affiliation(s)
- Luisa Rocha
- Department of Pharmacobiology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV) , Mexico City , Mexico
| | - Mario Alonso-Vanegas
- National Institute of Neurology and Neurosurgery "Manuel Velasco Suarez" , Mexico City , Mexico
| | - Iris E Martínez-Juárez
- National Institute of Neurology and Neurosurgery "Manuel Velasco Suarez" , Mexico City , Mexico
| | - Sandra Orozco-Suárez
- Unit for Medical Research in Neurological Diseases, National Medical Center , Mexico City , Mexico
| | - David Escalante-Santiago
- Unit for Medical Research in Neurological Diseases, National Medical Center , Mexico City , Mexico
| | | | - Cecilia Zavala-Tecuapetla
- Department of Pharmacobiology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV) , Mexico City , Mexico
| | | | | | - Jesús Cienfuegos
- National Institute of Neurology and Neurosurgery "Manuel Velasco Suarez" , Mexico City , Mexico
| |
Collapse
|
8
|
Rocha L, Alonso-Vanegas M, Martínez-Juárez IE, Orozco-Suárez S, Escalante-Santiago D, Feria-Romero IA, Zavala-Tecuapetla C, Cisneros-Franco JM, Buentello-García RM, Cienfuegos J. GABAergic alterations in neocortex of patients with pharmacoresistant temporal lobe epilepsy can explain the comorbidity of anxiety and depression: the potential impact of clinical factors. Front Cell Neurosci 2015. [PMID: 25601827 DOI: 10.3389/fnce1.2014.00442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is a chronic neurodegenerative disease with a high prevalence of psychiatric disorders. Temporal neocortex contributes to either seizure propagation or generation in TLE, a situation that has been associated with alterations of the γ-amino-butyric acid (GABA) system. On the other hand, an impaired neurotransmission mediated by GABA in temporal neocortex has also been involved with the pathophysiology of psychiatric disorders. In spite of these situations, the role of the necortical GABA system in the comorbidity of TLE and mood disorders has not been investigated. The present study was designed to identify alterations in the GABA system such as binding to GABAA and GABAB receptors and benzodiazepine site, the tissue content of GABA and the expression of the mRNA encoding the α1-6, β1-3, and γ GABAA subunits, in the temporal neocortex of surgically treated patients with TLE with and without anxiety, and/or depression. Neocortex of patients with TLE and comorbid anxiety and/or depression showed increased expression of the mRNA encoding the γ2-subunit, reduced GABAB-induced G-protein activation in spite of elevated GABAB binding, and lower tissue content of GABA when compared to autopsy controls. Some of these changes significantly correlated with seizure frequency and duration of epilepsy. The results obtained suggest a dysfunction of the GABAergic neurotransmission in temporal neocortex of patients with TLE and comorbid anxiety and/or depression that could be also influenced by clinical factors such as seizure frequency and duration of illness.
Collapse
Affiliation(s)
- Luisa Rocha
- Department of Pharmacobiology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV) , Mexico City , Mexico
| | - Mario Alonso-Vanegas
- National Institute of Neurology and Neurosurgery "Manuel Velasco Suarez" , Mexico City , Mexico
| | - Iris E Martínez-Juárez
- National Institute of Neurology and Neurosurgery "Manuel Velasco Suarez" , Mexico City , Mexico
| | - Sandra Orozco-Suárez
- Unit for Medical Research in Neurological Diseases, National Medical Center , Mexico City , Mexico
| | - David Escalante-Santiago
- Unit for Medical Research in Neurological Diseases, National Medical Center , Mexico City , Mexico
| | | | - Cecilia Zavala-Tecuapetla
- Department of Pharmacobiology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV) , Mexico City , Mexico
| | | | | | - Jesús Cienfuegos
- National Institute of Neurology and Neurosurgery "Manuel Velasco Suarez" , Mexico City , Mexico
| |
Collapse
|
9
|
Vlainić J, Jembrek MJ, Vlainić T, Štrac DŠ, Peričić D. Differential effects of short- and long-term zolpidem treatment on recombinant α1β2γ2s subtype of GABA(A) receptors in vitro. Acta Pharmacol Sin 2012; 33:1469-76. [PMID: 22922343 DOI: 10.1038/aps.2012.89] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AIM Zolpidem is a non-benzodiazepine agonist at benzodiazepine binding site in GABA(A) receptors, which is increasingly prescribed. Recent studies suggest that prolonged zolpidem treatment induces tolerance. The aim of this study was to explore the adaptive changes in GABA(A) receptors following short and long-term exposure to zolpidem in vitro. METHODS Human embryonic kidney (HEK) 293 cells stably expressing recombinant α1β2γ2s GABA(A) receptors were exposed to zolpidem (1 and 10 μmol/L) for short-term (2 h daily for 1, 2, or 3 consecutive days) or long-term (continuously for 48 h). Radioligand binding studies were used to determine the parameters of [(3)H]flunitrazepam binding sites. RESULTS A single (2 h) or repeated (2 h daily for 2 or 3 d) short-term exposure to zolpidem affected neither the maximum number of [(3)H]flunitrazepam binding sites nor the affinity. In both control and short-term zolpidem treated groups, addition of GABA (1 nmol/L-1 mmol/L) enhanced [(3)H]flunitrazepam binding in a concentration-dependent manner. The maximum enhancement of [(3)H]flunitrazepam binding in short-term zolpidem treated group was not significantly different from that in the control group. In contrast, long-term exposure to zolpidem resulted in significantly increase in the maximum number of [(3)H]flunitrazepam binding sites without changing the affinity. Furthermore, long-term exposure to zolpidem significantly decreased the ability of GABA to stimulate [(3)H]flunitrazepam binding. CONCLUSION The results suggest that continuous, but not intermittent and short-term, zolpidem-exposure is able to induce adaptive changes in GABA(A) receptors that could be related to the development of tolerance and dependence.
Collapse
|
10
|
Vlainić J, Švob Štrac D, Jazvinšćak Jembrek M, Vlainić T, Peričić D. The effects of zolpidem treatment on GABA(A) receptors in cultured cerebellar granule cells: changes in functional coupling. Life Sci 2012; 90:889-94. [PMID: 22564411 DOI: 10.1016/j.lfs.2012.04.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 04/11/2012] [Accepted: 04/13/2012] [Indexed: 11/16/2022]
Abstract
AIMS Hypnotic zolpidem is a positive allosteric modulator of γ-aminobutyric acid (GABA) action, with preferential although not exclusive binding for α1 subunit-containing GABA(A) receptors. The pharmacological profile of this drug is different from that of classical benzodiazepines, although it acts through benzodiazepine binding sites at GABA(A) receptors. The aim of this study was to further explore the molecular mechanisms of GABA(A) receptor induction by zolpidem. MAIN METHODS In the present study, we explored the effects of two-day zolpidem (10 μM) treatment on GABA(A) receptors on the membranes of rat cerebellar granule cells (CGCs) using [(3)H]flunitrazepam binding and semi-quantitative PCR analysis. KEY FINDINGS Two-day zolpidem treatment of CGCs did not significantly affect the maximum number (B(max)) of [(3)H]flunitrazepam binding sites or the expression of α1 subunit mRNA. However, as shown by decreased GABA [(3)H]flunitrazepam binding, two-day exposure of CGCs to zolpidem caused functional uncoupling of GABA and benzodiazepine binding sites at GABA(A) receptor complexes. SIGNIFICANCE If functional uncoupling of GABA and benzodiazepine binding sites at GABA(A) receptors is the mechanism responsible for the development of tolerance following long-term administration of classical benzodiazepines, chronic zolpidem treatment may induce tolerance.
Collapse
Affiliation(s)
- Josipa Vlainić
- Ruđer Bošković Institute, Division of Molecular Medicine, Laboratory for Molecular Neuropharmacology, POB 180, Zagreb, Croatia.
| | | | | | | | | |
Collapse
|
11
|
Mechanisms Underlying Tolerance after Long-Term Benzodiazepine Use: A Future for Subtype-Selective GABA(A) Receptor Modulators? Adv Pharmacol Sci 2012; 2012:416864. [PMID: 22536226 PMCID: PMC3321276 DOI: 10.1155/2012/416864] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 10/10/2011] [Accepted: 11/02/2011] [Indexed: 01/01/2023] Open
Abstract
Despite decades of basic and clinical research, our understanding of how benzodiazepines tend to lose their efficacy over time (tolerance) is at least incomplete. In appears that tolerance develops relatively quickly for the sedative and anticonvulsant actions of benzodiazepines, whereas tolerance to anxiolytic and amnesic effects probably does not develop at all. In light of this evidence, we review the current evidence for the neuroadaptive mechanisms underlying benzodiazepine tolerance, including changes of (i) the GABA(A) receptor (subunit expression and receptor coupling), (ii) intracellular changes stemming from transcriptional and neurotrophic factors, (iii) ionotropic glutamate receptors, (iv) other neurotransmitters (serotonin, dopamine, and acetylcholine systems), and (v) the neurosteroid system. From the large variance in the studies, it appears that either different (simultaneous) tolerance mechanisms occur depending on the benzodiazepine effect, or that the tolerance-inducing mechanism depends on the activated GABA(A) receptor subtypes. Importantly, there is no convincing evidence that tolerance occurs with α subunit subtype-selective compounds acting at the benzodiazepine site.
Collapse
|
12
|
de Haas SL, Schoemaker RC, van Gerven JMA, Hoever P, Cohen AF, Dingemanse J. Pharmacokinetics, pharmacodynamics and the pharmacokinetic/ pharmacodynamic relationship of zolpidem in healthy subjects. J Psychopharmacol 2010; 24:1619-29. [PMID: 19648220 DOI: 10.1177/0269881109106898] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Zolpidem is one of the most frequently prescribed hypnotics, as it is a very short-acting compound with relatively few side effects. Zolpidem's short duration of action is partly related to its short elimination half-life, but the associations between plasma levels and pharmacodynamic (PD) effects are not precisely known. In this study, the concentration-effect relationships for zolpidem were modelled. Zolpidem (10 mg) was administered in a double-blind, randomised, placebo-controlled trial to determine PD and pharmacokinetics (PK) in 14 healthy volunteers. Zolpidem was absorbed and eliminated quickly, with a median T(max) of 0.78 h (range: 0.33-2.50) and t(1/2) of 2.2 h. Zolpidem reduced saccadic peak velocity (SPV), adaptive tracking performance, electroencephalogram (EEG) alpha power and visual analogue scale (VAS) alertness score and increased body sway, EEG beta power and VAS 'feeling high'. Short- and long-term memory was not affected. Central nervous system effects normalised more rapidly than the decrease of plasma concentrations. For most effects, zolpidem's short duration of action could be adequately described by both a sigmoid E(max) model and a transit tolerance model. For SPV and EEG alpha power, the tolerance model seemed less suitable. These PK/PD models have different implications for the mechanism underlying zolpidem's short duration of action. A sigmoid E(max) model (which is based on ligand binding theory) would imply a threshold value for the drug's effective concentrations. A transit tolerance model (in which a hypothetical factor builds up with time that antagonises the effects of the parent compound) is compatible with a rapid reversible desensitisation of GABAergic subunits.
Collapse
Affiliation(s)
- S L de Haas
- Centre for Human Drug Research, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
13
|
The effects of zolpidem treatment and withdrawal on the in vitro expression of recombinant alpha1beta2gamma2s GABA(A) receptors expressed in HEK 293 cells. Naunyn Schmiedebergs Arch Pharmacol 2010; 382:201-12. [PMID: 20652804 DOI: 10.1007/s00210-010-0539-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 07/10/2010] [Indexed: 10/19/2022]
Abstract
Zolpidem, a widely used hypnotic drug which acts through benzodiazepine binding sites, is a positive allosteric modulator of gamma-aminobutyric acid (GABA) action with preferential affinity for GABA(A) receptors containing alpha1 subunit. The pharmacological profile of zolpidem is different from that of classical benzodiazepines. The aim of this study was to find out whether zolpidem treatment triggers adaptive changes in the recombinant alpha1 subunit-containing GABA(A) receptors other than those observed following treatment with classical benzodiazepine-diazepam. Radioligand binding studies showed that 2-day exposure of human embryonic kidney (HEK) 293 cells stably expressing recombinant alpha1beta2gamma2s GABA(A) receptors to zolpidem (10 muM) up-regulated the maximum number (B (max)) of [(3)H]flunitrazepam, [(3)H]muscimol, and [(3)H]t-butylbicycloorthobenzoate ([(3)H]TBOB) binding sites without changing their affinity (K (d)), suggesting an increase in total GABA(A) receptor number. Semi-quantitative RT-PCR analysis demonstrated increased levels of alpha1 subunit mRNA, while Western blot demonstrated up-regulated gamma2 subunit proteins, suggesting that zolpidem induced de novo synthesis of receptors proteins, at both the transcriptional and translational levels. GABA-induced potentiation of [(3)H]flunitrazepam binding to membranes obtained from zolpidem-treated cells was markedly reduced, indicating allosteric uncoupling between GABA and benzodiazepine binding sites. The number of benzodiazepine and convulsant binding sites as well as the functional coupling between GABA and benzodiazepine binding sites normalized in 24 h following discontinuation of zolpidem treatment. The results of our in vitro studies suggest that a 2-day exposure of recombinant alpha1 subunit-containing GABA(A) receptors stably transfected in HEK 293 cells to zolpidem induces adaptive changes in this selective GABA(A) receptor subtype, which are not substantially different from those obtained after prolonged exposure of cells to high concentrations of diazepam.
Collapse
|
14
|
Differential effects of diazepam treatment and withdrawal on recombinant GABAA receptor expression and functional coupling. Brain Res 2008; 1246:29-40. [PMID: 18955034 DOI: 10.1016/j.brainres.2008.09.093] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 09/17/2008] [Accepted: 09/26/2008] [Indexed: 11/24/2022]
Abstract
Prolonged exposure to benzodiazepines, drugs known to produce tolerance and dependence and also to be abused, leads to adaptive changes in GABA(A) receptors. To further explore the mechanisms responsible for these phenomena, we studied the effects of prolonged diazepam treatment on the recombinant alpha(1)beta(2)gamma(2S) GABA(A) receptors, stably expressed in human embryonic kidney (HEK) 293 cells. The results demonstrating that long-term (48 and 72 h) exposure of cells to a high concentration of diazepam (50 microM) enhanced the maximum number (B(max)) of [(3)H]flunitrazepam, [(3)H]muscimol and [(3)H]t-butylbicycloorthobenzoate ([(3)H]TBOB) binding sites, without changing their affinity (K(d)), suggested the up-regulation of GABA(A) receptors. As demonstrated by cell counting and WST-1 proliferation assay, the observed increase in receptor expression was not a consequence of stimulated growth of cells exposed to diazepam. Semi-quantitative RT-PCR and Western blot analysis, showing elevated levels of alpha(1) subunit mRNA as well as beta(2) and gamma(2) subunit proteins, respectively, suggested that prolonged high dose diazepam treatment induced de novo receptor synthesis by acting at both transcriptional and translational levels. The finding that the number of GABA(A) receptor binding sites returned to control value 24 h following diazepam withdrawal, makes this process less likely to account for the development of benzodiazepine tolerance and dependence. On the other hand, the results demonstrating that observed functional uncoupling between GABA and benzodiazepine binding sites persisted after the termination of diazepam treatment supported the hypothesis of its possible role in these phenomena.
Collapse
|
15
|
Heldt SA, Ressler KJ. Training-induced changes in the expression of GABAA-associated genes in the amygdala after the acquisition and extinction of Pavlovian fear. Eur J Neurosci 2008; 26:3631-44. [PMID: 18088283 DOI: 10.1111/j.1460-9568.2007.05970.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Previous work suggests the gamma-aminobutyric acid (GABA)ergic system may be dynamically regulated during emotional learning. In the current study we examined training-induced changes in the expression of GABA(A)-related genes and the binding of GABA receptor radioligands in the amygdala after the acquisition and extinction of Pavlovian fear. Using in situ hybridization, we examined the expression pattern changes of mRNAs for GABAergic markers in the lateral, basolateral and central subdivisions of the amygdala in C57Bl/6J mice. These markers included GABA-synthesizing enzymes (GAD67 and GAD65), major GABA(A) receptor subunits (alpha1, alpha2, alpha3, alpha5, beta2 and gamma2) and the expression of mRNAs that are involved in a variety of GABA-related intracellular processes, including GABA transporter-1 (GAT1), GABA(A) receptor-associated protein and the GABA(A) clustering protein, gephyrin. With fear conditioning, we found decreased mRNA levels of alpha1, alpha5 and GAD67, as well as deceased benzodiazepine binding in the amygdala. Fear extinction induced an increase in mRNA levels of alpha2, beta2, GAD67 and gephyrin, as well as a decrease in GAT1. Together, these findings indicate that the acquisition of fear induced a downregulation of mRNA markers related to a decrease in amygdala GABAergic function, whereas the acquisition of fear extinction produced an upregulation of GABAergic markers related to enhanced GABAergic transmission.
Collapse
Affiliation(s)
- Scott A Heldt
- Center for Behavioral Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
| | | |
Collapse
|