1
|
Singh D, Oladimeji-Salami J, Akindele AJ. New insights on pharmacological and therapeutic potentials of trimetazidine beyond anti-anginal drug: A comprehensive review. Eur J Pharmacol 2024; 985:177062. [PMID: 39427862 DOI: 10.1016/j.ejphar.2024.177062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/27/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Trimetazidine (TMZ) is a beneficial and well-tolerable anti-anginal drug which has protective action towards ischemia and reperfusion injury. TMZ performs its anti-ischemic effect by modifying cardiac metabolism without shifting the hemodynamic functions, so it represents an outstanding complementary perspective to the general angina treatment. TMZ possesses a positive impact on the inflammatory profile, and also endothelial function furthermore displays various benefits through minimising the number, as well as the intensity of angina strikes and ameliorating the clinical indication and symptoms of myocardium ischemia. It is administrated as monotherapy along with a combination of different antianginal drugs. Apart from anti-angina action, in recent years TMZ has shown various pharmacological activities such as neuroprotective, renal protective, hepato-protective, cardio-protective effects, and other beneficial pharmacological activities. We select to write the present review article to cover the different pharmacological and therapeutic potentials of TMZ.
Collapse
Affiliation(s)
- Dhirendra Singh
- Department of Pharmacology, M.M College of Pharmacy, Maharishi Markandeshwar Mullana, Ambala, Haryana, India.
| | - Joy Oladimeji-Salami
- Medical Biotechnology Department, National Biotechnology Research and Development Agency, Abuja, Nigeria
| | - Abidemi James Akindele
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Idi-Araba, P.M.B. 12003, Lagos, Nigeria.
| |
Collapse
|
2
|
Antmen FM, Fedaioglu Z, Acar D, Sayar AK, Yavuz IE, Ada E, Karakose B, Rzayeva L, Demircan S, Kardouh F, Senay S, Kolgazi M, Suyen G, Oz-Arslan D. Exploring Liraglutide in Lithium-Pilocarpine-Induced Temporal Lobe Epilepsy Model in Rats: Impact on Inflammation, Mitochondrial Function, and Behavior. Biomedicines 2024; 12:2205. [PMID: 39457518 PMCID: PMC11505538 DOI: 10.3390/biomedicines12102205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Glucagon-like peptide-1 receptor agonists such as liraglutide are known for their neuroprotective effects in neurodegenerative disorders, but their role in temporal lobe epilepsy (TLE) remains unclear. We aimed to investigate the effects of liraglutide on several biological processes, including inflammation, antioxidant defense mechanisms, mitochondrial dynamics, and function, as well as cognitive and behavioral changes in the TLE model. Methods: Low-dose, repeated intraperitoneal injections of lithium chloride-pilocarpine hydrochloride were used to induce status epilepticus (SE) in order to develop TLE in rats. Fifty-six male Sprague Dawley rats were subjected and allocated to the groups. The effects of liraglutide on inflammatory markers (NLRP3, Caspase-1, and IL-1β), antioxidant pathways (Nrf-2 and p-Nrf-2), and mitochondrial dynamics proteins (Pink1, Mfn2, and Drp1) were evaluated in hippocampal tissues via a Western blot. Mitochondrial function in peripheral blood mononuclear cells (PBMCs) was examined using flow cytometry. Cognitive-behavioral outcomes were assessed using the open-field, elevated plus maze, and Morris water maze tests. Results: Our results showed that liraglutide modulates NLRP3-mediated inflammation, reduces oxidative stress, and triggers antioxidative pathways through Nrf2 in SE-induced rats. Moreover, liraglutide treatment restored Pink1, Mfn2, and Drp1 levels in SE-induced rats. Liraglutide treatment also altered the mitochondrial function of PBMCs in both healthy and epileptic rats. This suggests that treatment can modulate mitochondrial dynamics and functions in the brain and periphery. Furthermore, in the behavioral aspect, liraglutide reversed the movement-enhancing effect of epilepsy. Conclusions: This research underscores the potential of GLP-1RAs as a possibly promising therapeutic strategy for TLE.
Collapse
Affiliation(s)
- Fatma Merve Antmen
- Department of Physiology, Graduate School of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye; (F.M.A.)
- Biobank Unit, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Zeynep Fedaioglu
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Dilan Acar
- Department of Physiology, Graduate School of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye; (F.M.A.)
| | - Ahmed Kerem Sayar
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Ilayda Esma Yavuz
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Ece Ada
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Bengisu Karakose
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Lale Rzayeva
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Sevcan Demircan
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Farah Kardouh
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Simge Senay
- Department of Medical Biotechnology, Graduate School of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Meltem Kolgazi
- Department of Physiology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Guldal Suyen
- Department of Physiology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Devrim Oz-Arslan
- Department of Biophysics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| |
Collapse
|
3
|
Mohamed SS, Rasheed NOA, Ibrahim WW, Shiha NA. Targeting Toll-like Receptor 4/Nuclear Factor-κB and Nrf2/Heme Oxygenase-1 Crosstalk via Trimetazidine Alleviates Lipopolysaccharide-Induced Depressive-like Behaviors in Mice. J Neuroimmune Pharmacol 2024; 19:50. [PMID: 39312021 PMCID: PMC11420337 DOI: 10.1007/s11481-024-10149-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/01/2024] [Indexed: 09/26/2024]
Abstract
Depression is a global psychiatric illness that imposes a substantial economic burden. Unfortunately, traditional antidepressants induce many side effects which limit patient compliance thus, exploring alternative therapies with fewer adverse effects became urgent. This study aimed to investigate the effect of trimetazidine (TMZ); a well-known anti-ischemic drug in lipopolysaccharide (LPS) mouse model of depression focusing on its ability to regulate toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) as well as nuclear factor erythroid 2 related factor 2 (Nrf2)/ heme oxygenase-1 (HO-1) signaling pathways. Male Swiss albino mice were injected with LPS (500 µg/kg, i.p) every other day alone or parallel with oral doses of either escitalopram (Esc) (10 mg/kg/day) or TMZ (20 mg/kg/day) for 14 days. Treatment with TMZ attenuated LPS-induced animals' despair with reduced immobility time inforced swimming test. TMZ also diminished LPS- induced neuro-inflammation via inhibition of TLR4/NF-κB pathway contrary to Nrf2/HO-1 cascade activation with consequent increase in reduced glutathione (GSH) and HO-1 levels whereas the pro-inflammatory cytokines; tumor necrosis factor-α (TNF-α) and interleukin (IL)-1β were evidently reduced. Besides, TMZ replenished brain serotonin levels via serotonin transporter (SERT) inhibition. Thus, TMZ hindered LPS-induced neuro-inflammation, oxidative stress, serotonin deficiency besides its anti-apoptotic effect which was reflected by decreased caspase-3 level. Neuroprotective effects of TMZ were confirmed by the histological photomicrographs which showed prominent neuronal survival. Here we showed that TMZ is an affluent nominee for depression management via targeting TLR4/NF-κB and Nrf2/HO-1 pathways. Future research addressing TMZ-antidepressant activity in humans is mandatory to enroll it as a novel therapeutic strategy for depression.
Collapse
Affiliation(s)
- Sarah S Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, Egypt.
| | - Nora O Abdel Rasheed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, Egypt
| | - Weam W Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, Egypt
| | - Nesma A Shiha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, Egypt
| |
Collapse
|
4
|
Elbaset MA, Afifi SM, Esatbeyoglu T, Abdelrahman SS, Saleh DO. Neuroprotective Effects of Trimetazidine against Cisplatin-Induced Peripheral Neuropathy: Involvement of AMPK-Mediated PI3K/mTOR, Nrf2, and NF- κB Signaling Axes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:6612009. [PMID: 39502494 PMCID: PMC11535264 DOI: 10.1155/2024/6612009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 05/28/2024] [Accepted: 07/06/2024] [Indexed: 11/08/2024]
Abstract
Cisplatin-induced peripheral neuropathy (CIPN) is a common and debilitating side effect of cisplatin chemotherapy used in cancer treatment. This study explored the neuroprotective effects of Trimetazidine (TRI) against CIPN by preserving nerve integrity, reducing neuro-oxidative stress, and alleviating neuroinflammation. Using a rat model of CIPN, we evaluated TRI's impact on motor coordination, pain sensitivity, and peripheral nerve histopathology. Also, its effects on neuro-oxidative stress and neuroinflammatory markers were assessed. The findings showed that rats with CIPN had worse motor coordination and increased sensitivity to pain but that these symptoms were alleviated by TRI therapy in a dose-dependent way. Nerve conduction velocities were normalized, and expression of genes involved in neuropathy signaling was suppressed after TRI therapy. Antioxidant benefits were also shown in TRI, with oxidative damage being reduced and the cellular energy balance being restored. By inhibiting the production of inflammatory markers, it also demonstrated anti-inflammatory properties. Histopathological examination revealed that TRI, especially when administered at a higher dose, inhibited the degeneration and demyelination of nerve fibers. The anti-inflammatory properties of TRI in the sciatic nerves were further shown by the fact that its administration reduced iNOS expression. In conclusion, AMPK-mediated PI3K/mTOR, Nrf2, and NF-κB signaling pathways may all be involved in the therapeutic benefits of TRI for CIPN. These results indicate that TRI may be useful for reducing the side effects of CIPN and enhancing patient outcomes during cisplatin chemotherapy.
Collapse
Affiliation(s)
- Marawan A. Elbaset
- Pharmacology DepartmentMedical Research and Clinical Studies InstituteNational Research Centre, 33 El-Bohouth Street, Dokki, Cairo P.O. 12622, Egypt
| | - Sherif M. Afifi
- Department for Life Quality StudiesRimini CampusUniversity of Bologna, Corso d'Augusto, 237, Rimini 47921, Italy
| | - Tuba Esatbeyoglu
- Department of Molecular Food Chemistry and Food DevelopmentInstitute of Food and One HealthGottfried Wilhelm Leibniz University, Am Kleinen Felde 30, Hannover 30167, Germany
| | - Sahar S. Abdelrahman
- Department of PathologyCollege of Veterinary MedicineCairo University, Cairo P.O. 12211, Egypt
| | - Dalia O. Saleh
- Pharmacology DepartmentMedical Research and Clinical Studies InstituteNational Research Centre, 33 El-Bohouth Street, Dokki, Cairo P.O. 12622, Egypt
| |
Collapse
|
5
|
Eghbali F, Dehkordi HT, Amini-Khoei H, Lorigooini Z, Rahimi-Madiseh M. The potential role of nitric oxide in the anticonvulsant effects of betulin in pentylenetetrazole (PTZ)-induced seizures in mice. IBRO Neurosci Rep 2024; 16:527-534. [PMID: 38706971 PMCID: PMC11068554 DOI: 10.1016/j.ibneur.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 05/07/2024] Open
Abstract
Epilepsy poses a significant challenge, especially for drug-resistant cases, necessitating novel treatment avenues. This study explores the potential interplay between nitric oxide (NO) and the anticonvulsant effects of betulin, a triterpene with promising neuroprotective properties. While betulin exhibits anticonvulsant effects, the specific involvement of NO remains inadequately understood, constituting a pivotal gap in current knowledge. One hundred NMRI mice were randomly assigned to diverse treatment groups, with seizures induced by pentylenetetrazol (PTZ). Parameters such as seizure threshold, nitrite levels, total antioxidant capacity (TAC), malondialdehyde (MDA) levels, and iNOS/nNOS gene expressions were assessed. Betulin significantly increased seizure thresholds and mitigated PTZ-induced NO levels. These findings suggest a potential modulation of NO-related pathways, emphasizing betulin's anti-inflammatory and antioxidant attributes. The study sheds light on betulin's multifaceted impact on oxidative stress, NO regulation, and iNOS/nNOS gene expressions. The ability of betulin to suppress iNOS/nNOS gene expressions, leading to reduce NO production, underscores its potential as an anticonvulsant.
Collapse
Affiliation(s)
- Fatemeh Eghbali
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Tahmasebi Dehkordi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Rahimi-Madiseh
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
6
|
Yang Y, Chen L, Zhang N, Zhao Y, Che H, Wang Y, Zhang T, Wen M. DHA and EPA Alleviate Epileptic Depression in PTZ-Treated Young Mice Model by Inhibiting Neuroinflammation through Regulating Microglial M2 Polarization and Improving Mitochondrial Metabolism. Antioxidants (Basel) 2023; 12:2079. [PMID: 38136199 PMCID: PMC10740521 DOI: 10.3390/antiox12122079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Depression is the most common complication of childhood epilepsy, leading to a poor prognosis for seizure control and poor quality of life. However, the molecular mechanisms underlying epileptic depression have not been completely elucidated. Increasing evidence suggests that oxidative stress and neuroinflammation are major contributors to depression. The positive effects of dietary supplementation with docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on depression have been previously reported. However, knowledge regarding the effects of EPA and DHA in managing depressive symptoms in pediatric patients with epilepsy is limited. Therefore, this study aims to investigate the effects of EPA and DHA on epileptic depression in a pentylenetetrazole (PTZ)-treated young mouse model. Three-week-old mice were fed a DHA- or EPA-enriched diet for 21 days and treated with PTZ (35 mg/kg, i.p.) every other day for a total of 10 times. EPA was more effective than DHA at alleviating PTZ-induced depressive symptoms. Pathological results revealed that DHA and EPA significantly improved neuronal degeneration in the hippocampus. Analysis of the mechanism revealed that DHA and EPA mitigated PTZ-induced myelin damage by increasing the protein levels of CNPase, Olig2, and MBP. Furthermore, both DHA and EPA reduced neuroinflammation by promoting microglial M2 polarization and suppressing the LCN2-NLRP3 inflammasome pathway. Notably, EPA polarized microglia towards the M2 phenotype. In addition, DHA and EPA decreased oxidative stress by inhibiting NOX2 and enhancing mitochondrial metabolism through the increased expression of mitochondrial respiratory chain complex I-V proteins. These findings suggest that DHA and EPA can be used as effective interventions to improve depression in children with epilepsy, with EPA being a particularly favorable option.
Collapse
Affiliation(s)
- Yueqi Yang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (Y.Y.); (L.C.); (N.Z.)
| | - Lu Chen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (Y.Y.); (L.C.); (N.Z.)
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (Y.Y.); (L.C.); (N.Z.)
| | - Yingcai Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (Y.Z.); (Y.W.); (T.Z.)
| | - Hongxia Che
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China;
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (Y.Z.); (Y.W.); (T.Z.)
| | - Tiantian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (Y.Z.); (Y.W.); (T.Z.)
| | - Min Wen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (Y.Y.); (L.C.); (N.Z.)
- Pet Nutrition Research and Development Center Gambol Pet Group Co., Ltd., Liaocheng 252000, China
| |
Collapse
|
7
|
Khanra S, Reddy P, Giménez-Palomo A, Park CHJ, Panizzutti B, McCallum M, Arumugham SS, Umesh S, Debnath M, Das B, Venkatasubramanian G, Ashton M, Turner A, Dean OM, Walder K, Vieta E, Yatham LN, Pacchiarotti I, Reddy YCJ, Goyal N, Kesavan M, Colomer L, Berk M, Kim JH. Metabolic regulation to treat bipolar depression: mechanisms and targeting by trimetazidine. Mol Psychiatry 2023; 28:3231-3242. [PMID: 37386057 PMCID: PMC10618096 DOI: 10.1038/s41380-023-02134-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/14/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
Bipolar disorder's core feature is the pathological disturbances in mood, often accompanied by disrupted thinking and behavior. Its complex and heterogeneous etiology implies that a range of inherited and environmental factors are involved. This heterogeneity and poorly understood neurobiology pose significant challenges to existing drug development paradigms, resulting in scarce treatment options, especially for bipolar depression. Therefore, novel approaches are needed to discover new treatment options. In this review, we first highlight the main molecular mechanisms known to be associated with bipolar depression-mitochondrial dysfunction, inflammation and oxidative stress. We then examine the available literature for the effects of trimetazidine in said alterations. Trimetazidine was identified without a priori hypothesis using a gene-expression signature for the effects of a combination of drugs used to treat bipolar disorder and screening a library of off-patent drugs in cultured human neuronal-like cells. Trimetazidine is used to treat angina pectoris for its cytoprotective and metabolic effects (improved glucose utilization for energy production). The preclinical and clinical literature strongly support trimetazidine's potential to treat bipolar depression, having anti-inflammatory and antioxidant properties while normalizing mitochondrial function only when it is compromised. Further, trimetazidine's demonstrated safety and tolerability provide a strong rationale for clinical trials to test its efficacy to treat bipolar depression that could fast-track its repurposing to address such an unmet need as bipolar depression.
Collapse
Affiliation(s)
- Sourav Khanra
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Preethi Reddy
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Anna Giménez-Palomo
- Bipolar and Depressive Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Biomedical Research Networking Center (CIBERSAM), Madrid, Spain
| | - Chun Hui J Park
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Bruna Panizzutti
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Madeleine McCallum
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Shyam Sundar Arumugham
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Shreekantiah Umesh
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Monojit Debnath
- Department of Human Genetics, NIMHANS, Bengaluru, Karnataka, India
| | - Basudeb Das
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Ganesan Venkatasubramanian
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Melanie Ashton
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Alyna Turner
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Olivia M Dean
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Ken Walder
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Eduard Vieta
- Bipolar and Depressive Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Biomedical Research Networking Center (CIBERSAM), Madrid, Spain
| | - Lakshmi N Yatham
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Isabella Pacchiarotti
- Bipolar and Depressive Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Biomedical Research Networking Center (CIBERSAM), Madrid, Spain
| | - Y C Janardhan Reddy
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Nishant Goyal
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Muralidharan Kesavan
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Lluc Colomer
- Bipolar and Depressive Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Biomedical Research Networking Center (CIBERSAM), Madrid, Spain
| | - Michael Berk
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia.
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.
| | - Jee Hyun Kim
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia.
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
8
|
Hammad ASA, Sayed-Ahmed MM, Abdel Hafez SMN, Ibrahim ARN, Khalifa MMA, El-Daly M. Trimetazidine alleviates paclitaxel-induced peripheral neuropathy through modulation of TLR4/p38/NFκB and klotho protein expression. Chem Biol Interact 2023; 376:110446. [PMID: 36898573 DOI: 10.1016/j.cbi.2023.110446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Chemotherapy-induced peripheral neuropathy is a common adverse effect associated with a number of chemotherapeutic agents including paclitaxel (PTX) which is commonly used in a wide range of solid tumors. Development of PTX-induced peripheral neuropathy (PIPN) during cancer treatment requires dose reduction which limits its clinical benefits. This study is conducted to investigate the role of toll like receptor-4 (TLR4) and p38 signaling and Klotho protein expression in PIPN and the role of Trimetazidine (TMZ) in this pathway. Sixty-four male Swiss albino mice were divided into 4 groups (n = 16); Group (1) injected intraperitoneally (IP) with ethanol/tween 80/saline for 8 successive days. Group (2) received TMZ (5 mg/kg, IP, day) for 8 successive days. Group (3) treated with 4 doses of PTX (4.5 mg/kg, IP) every other day over a period of 8 days. Group (4) received a combination of TMZ as group 2 and PTX as group 3. The Effect of TMZ on the antitumor activity of PTX was studied in another set of mice-bearing Solid Ehrlich Carcinoma (SEC) that was similarly divided as the above-mentioned set. TMZ mitigated tactile allodynia, thermal hypoalgesia, numbness and fine motor dyscoordination associated with PTX in Swiss mice. The results of the current study show that the neuroprotective effect of TMZ can be attributed to inhibition of TLR4/p38 signaling which also includes a reduction in matrix metalloproteinase-9 (MMP9) protein levels as well as the proinflammatory interleukin-1β (IL-1β) and preserving the levels of the anti-inflammatory IL-10. Moreover, the current study is the first to demonstrate that PTX reduces the neuronal levels of klotho protein and showed its modulation via cotreatment with TMZ. In addition, this study showed that TMZ neither alter the growth of SEC nor the antitumor activity of PTX. In conclusion, we suggest that (1) Inhibition of Klotho protein and upregulation of TLR4/p38 signals in nerve tissues may contribute to PIPN. (2) TMZ attenuates PIPN by modulating TLR4/p38 and Klotho protein expression in without interfering with its antitumor activity.
Collapse
Affiliation(s)
- Asmaa S A Hammad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, 61511, Egypt.
| | - Mohamed M Sayed-Ahmed
- Pharmacology and Experimental Oncology Unit, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
| | - Sara M N Abdel Hafez
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minia, 61511, Egypt
| | - Ahmed R N Ibrahim
- Clinical Pharmacy Department, College of Pharmacy, King Khalid University, Abha, 61441, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61511, Egypt
| | - Mohamed M A Khalifa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, 61511, Egypt
| | - Mahmoud El-Daly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, 61511, Egypt
| |
Collapse
|
9
|
The Anti-Seizure Effect of Liraglutide on Ptz-Induced Convulsions Through its Anti-Oxidant and Anti-Inflammatory Properties. Neurochem Res 2023; 48:188-195. [PMID: 36040609 DOI: 10.1007/s11064-022-03736-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 01/11/2023]
Abstract
Epilepsy is a prevalent and frequently devastating neurological disorder defined by recurring spontaneous seizures caused by aberrant electrical activity in the brain. Over ten million people worldwide suffer from drug-resistant epilepsy. This severe condition requires novel treatment approaches. Both oxidative and nitrosative stress are thought to have a role in the etiology of epilepsy. Liraglutide is a glucagon-like peptide-1 (GLP-1) analogue that is used to treat type-2 diabetes mellitus. According to recent studies, Liraglutide also shows neuroprotective properties, improving memory retention and total hippocampus pyramidal neuronal population in mice. The purpose of this investigation was to determine the anti-seizure and anti-oxidative effects of liraglutide in a pentylenetetrazole (PTZ)-induced rat model of epilepsy. 48 rats were randomly assigned to two groups: those who had electroencephalography (EEG) recordings and those who underwent behavioral assessment. Rats received either intraperitoneal (IP) liraglutide at two different dosages (3-6 mg/kg) or a placebo, followed by pentylenetetrazole (IP). To determine if liraglutide has anti-seizure characteristics, we examined seizure activity in rats using EEG, the Racine convulsion scale (RCS), the time of first myoclonic jerk (FMJ), and MDA, SOD, TNF-α, IL-1β and GAD-67 levels. The mean EEG spike wave percentage score was reduced from 75.8% (placebo) to 59.4% (lower-dose) and 41.5% (higher-dose). FMJ had increased from a mean of 70.6 s (placebo) to 181.2 s (lower-dose) and 205.2 s (higher-dose). RCS was reduced from a mean of 5.5 (placebo) to 2.7 (lower-dose) and 2.4 (higher-dose). Liraglutide (3 and 6 mg/kg i.p.) successfully decreased the spike percentages and RCS associated with PTZ induced epilepsy, as well as considerably decreased MDA, TNF-α, IL-1β and elevated SOD, GAD-67 levels in rat brain. Liraglutide significantly decreased seizure activity at both dosages when compared to control, most likely due to its anti-oxidant and anti-inflammatory properties. The potential clinical role of liraglutide as an anti-seizure medication should be further explored.
Collapse
|
10
|
Effects of Diclofenac Sodium on Seizure Activity in Rats with Pentylenetetrazole-Induced Convulsions. Neurochem Res 2022; 48:1412-1423. [PMID: 36474102 DOI: 10.1007/s11064-022-03838-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/12/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Epilepsy is a disease which affects between 1 and 2% of the population, and a large proportion of these people do not react to currently available anticonvulsant medications, indicating the need for further research into novel pharmacological therapies. Numerous studies have demonstrated that oxidative stress and inflammation occur during epilepsy and may contribute to its development and progression, indicating higher levels of oxidative and inflammatory parameters in experimental models and clinical patients. This research aimed to assess the impact of diclofenac sodium, a nonsteroidal anti-inflammatory medicine, on seizure and levels of oxidative stress and inflammatory biomarkers in a rat model of epilepsy triggered by pentylenetetrazole (PTZ). 60 rats were randomly allocated to one of two groups: electroencephalography (EEG) recordings or behavioral evaluation. Rats received diclofenac sodium at three various doses (25, 50, and 75 mg/kg) intraperitoneally (IP) or a placebo, followed by intraperitoneal (IP) pentylenetetrazole, a powerful seizure-inducing medication. To investigate if diclofenac sodium had antiseizure properties, seizure activity in rats was evaluated using EEG recordings, the Racine convulsion scale (RCS) behaviour score, the duration of the first myoclonic jerk (FMJ), and the levels of MDA, TNF-α, and SOD. The average percentage of EEG spike waves decreased from 76.8% (placebo) to 64.1% (25 mg/kg diclofenac), 55.9% (50 mg/kg diclofenac), and 37.8% (75 mg/kg diclofenac). FMJ had increased from a mean of 58.8 s (placebo), to 93.6 s (25 mg/kg diclofenac), 185.8 s (50 mg/kg diclofenac) and 231.7 s (75 mg/kg diclofenac). RCS scores decreased from a mean score of 5.6 (placebo), to 3.75 (25 mg/kg diclofenac), 2.8 (50 mg/kg diclofenac) and 1.75 (75 mg/kg diclofenac). MDA levels reduced from 14.2 ng/gr (placebo) to 9.6 ng/gr (25 mg/kg diclofenac), 8.4 ng/gr (50 mg/kg diclofenac) and 5.1 ng/gr (75 mg/kg diclofenac). Likely, TNF-α levels decreased from 67.9 ng/gr (placebo) to 48.1 ng/gr (25 mg/kg diclofenac), 33.5 ng/gr (50 mg/kg diclofenac) and 21.3 ng/gr (75 mg/kg diclofenac). SOD levels, however, enhanced from 0.048 U/mg (placebo) to 0.055 U/mg (25 mg/kg diclofenac), 0.14 U/mg (50 mg/kg diclofenac), and 0.18 U/mg (75 mg/kg diclofenac). Diclofenac sodium (25, 50, and 75 mg/kg i.p.) effectively lowered the spike percentages and RCS scores linked with PTZ-induced epilepsy in rats, as well as significantly decreased MDA, TNF-α, IL-1β, PGE2 and increased SOD levels. Probably as a result of its anti-oxidative and anti-inflammatory effects, diclofenac sodium dramatically lowered seizure activity at both doses compared to placebo control. Each of these results were significant, with p-values of < 0.01, < 0.05. Therefore, the therapeutic application diclofenac sodium as a potential anticonvulsant should be investigated further.
Collapse
|
11
|
Ullah MI, Anwar R, Kamran S, Gul B, Elhady SS, Youssef FS. Evaluation of the Anxiolytic and Anti-Epileptogenic Potential of Lactuca Serriola Seed Using Pentylenetetrazol-Induced Kindling in Mice and Metabolic Profiling of Its Bioactive Extract. Antioxidants (Basel) 2022; 11:2232. [PMID: 36421417 PMCID: PMC9686728 DOI: 10.3390/antiox11112232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2023] Open
Abstract
This study aimed to assess the potential of Lactuca serriola (Asteraceae) seed n-hexane, chloroform, methanol, and aqueous extracts as anticonvulsant, sedative, anticonvulsant and antiepileptic agents in Swiss albino mice. Different doses of each extract were evaluated for the anxiolytic potential using the hole-board, the elevated plus maze and the light/dark test. A phenobarbitone-induced sleep test was employed for the evaluation of sedative potential. Acute anticonvulsant activity was evaluated by picrotoxin and strychnine-induced convulsion models. All extracts significantly reduced the number of head dips where n-hexane extract (400 mg/kg) showed 96.34% reduction in the tendency of head dipping when compared with the control. Mice treated with extracts preferred elevated plus maze open arms and were shown to lack open arms evasion, especially n-hexane extract (400 mg/kg)-which showed 456.14%-increased the duration of open arm stay with the respective control group. By reducing sleep latency and greatly lengthening sleep duration, L. serriola enhanced the effects of barbiturate-induced sleep. A significant increase in convulsion latency and decrease in convulsions induced by picrotoxin and strychnine duration was observed in all extract-treated groups. All the extracts exhibited anti-epileptogenic potential as the seizure score in pentylenetetrazol (PTZ)-induced kindling in mice was reduced significantly. Maximum protection was afforded by chloroform extract that reduced the seizure score by 79.93% compared with the PTZ group. Chloroform executed antioxidant effect by elevating super oxide dismutase (SOD) by 126%, catalase (CAT) by 83.53%, total glutathione (tGSH) by 149%, and reducing malondialdhyde (MDA) levels by 36.49% in the brain tissues that is further consolidated by histopathological examination. Metabolic profiling of the most active chloroform extract using Gas chromatography coupled with mass showed the presence of 16 compounds. This anti-epileptic activity was further confirmed via in silico molecular modelling studies in the active site Gamma-aminobutyric acid aminotransferase (GABA-AT) where all of the tested metabolites illustrated a potent inhibitory potential towards GABA-AT with hexadecanoic acid, 15-methyl-, methyl ester followed by octadecanoic acid, methyl ester showed the best fitting. The results indicated the possible anxiolytic and anti-epileptogenic potential of the plant and further consolidated the ethnopharmacological use of L. serriola seeds.
Collapse
Affiliation(s)
- Muhammad Ihsan Ullah
- Punjab University College of Pharmacy, University of the Punjab, Lahore 54000, Pakistan
| | - Rukhsana Anwar
- Punjab University College of Pharmacy, University of the Punjab, Lahore 54000, Pakistan
| | - Shahzad Kamran
- Punjab University College of Pharmacy, University of the Punjab, Lahore 54000, Pakistan
| | - Bazgha Gul
- Punjab University College of Pharmacy, University of the Punjab, Lahore 54000, Pakistan
- Institute of Pharmacy, Lahore College for Women University, Lahore 54000, Pakistan
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fadia S. Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo 11566, Egypt
| |
Collapse
|
12
|
Borowicz-Reutt K, Banach M. Trimetazidine, an Anti-Ischemic Drug, Reduces the Antielectroshock Effects of Certain First-Generation Antiepileptic Drugs. Int J Mol Sci 2022; 23:ijms231911328. [PMID: 36232629 PMCID: PMC9570019 DOI: 10.3390/ijms231911328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Trimetazidine (TMZ), an anti-ischemic drug for improving cellular metabolism, is mostly administered to patients with poorly controlled ischemic heart disease (IHD). Since IHD is considered the most frequent causative factor of cardiac arrhythmias, and these often coexist with seizure disorders, we decided to investigate the effect of TMZ in the electroconvulsive threshold test (ECT) and its influence on the action of four first-generation antiepileptic drugs in the maximal electroshock test (MES) in mice. The TMZ (up to 120 mg/kg) did not affect the ECT, but applied at doses of 20–120 mg/kg it decreased the antielectroshock action of phenobarbital. The TMZ (50–120 mg/kg) reduced the effect of phenytoin, and, when administered at a dose of 120 mg/kg, it diminished the action of carbamazepine. All of these revealed interactions seem to be pharmacodynamic, since the TMZ did not affect the brain levels of antiepileptic drugs. Furthermore, the combination of TMZ with valproate (but not with other antiepileptic drugs) significantly impaired motor coordination, evaluated using the chimney test. Long-term memory, assessed with a passive-avoidance task, was not affected by either the TMZ or its combinations with antiepileptic drugs. The obtained results suggest that TMZ may not be beneficial as an add-on therapy in patients with IHD and epilepsy.
Collapse
|
13
|
Aqueous extract of Piper betle L. leaf and Areca catechu L. nut protects against pentylenetetrazole-induced seizures and positively modulates cognitive function in adult Zebrafish. ADVANCES IN TRADITIONAL MEDICINE 2022. [DOI: 10.1007/s13596-022-00664-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
14
|
Nasser AH, Gendy AM, El-Yamany MF, El-Tanbouly DM. Upregulation of neuronal progranulin mediates the antinociceptive effect of trimetazidine in paclitaxel-induced peripheral neuropathy: Role of ERK1/2 signaling. Toxicol Appl Pharmacol 2022; 448:116096. [PMID: 35662665 DOI: 10.1016/j.taap.2022.116096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/23/2022] [Accepted: 05/28/2022] [Indexed: 10/18/2022]
Abstract
Neuronal progranulin (PGRN) overexpression is an endogenous adaptive pain defense following nerve injury. It allows the survival of injured neurons to block enhanced nociceptive responses. Trimetazidine (TMZ) is widely used by cardiac patients as an anti-anginal drug, reflecting its anti-ischemic property. TMZ promotes axonal regeneration of sciatic nerves after crush injury. This study explored the interplay between PGRN and extracellular signal-regulated kinases (ERK1/2) to address mechanisms underlying neuropathic pain alleviation following paclitaxel (PTX) administration. Rats were given four injections of PTX (2 mg/kg, i.p.) every other day. Two days after the last dose, rats received TMZ (25 mg/kg) with or without the ERK inhibitor, PD98059, daily for 21 days. TMZ preserved the integrity of myelinated nerve fibers, as evidenced by an obvious reduction in axonal damage biomarkers. Accordingly, it alleviated PTX-evoked thermal, cold, and mechanical hyperalgesia/allodynia. TMZ also promoted ERK1/2 phosphorylation with a profound upsurge in PGRN content. These effects were associated with a substantial increase in Notch1 receptor gene expression and a prominent anti-inflammatory effect with a marked increase in mRNA expression of secretory leukocyte protease inhibitor. Further, TMZ decreased oxidative stress and caspase-3 activity in the sciatic nerve. Conversely, co-administration of PD98059 completely abolished these beneficial effects. Thus, the robust antinociceptive effect of TMZ is largely attributed to upregulating PGRN and Notch1 receptors via ERK1/2 activation.
Collapse
Affiliation(s)
- Asmaa H Nasser
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Abdallah M Gendy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Mohammed F El-Yamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Dalia M El-Tanbouly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
15
|
Engin S, Barut EN, Yaşar YK, Soysal AÇ, Arıcı T, Kerimoğlu G, Kadıoğlu M, Sezen SF. Trimetazidine attenuates cyclophosphamide-induced cystitis by inhibiting TLR4-mediated NFκB signaling in mice. Life Sci 2022; 301:120590. [PMID: 35504331 DOI: 10.1016/j.lfs.2022.120590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 11/26/2022]
Abstract
AIM Cyclophosphamide (CP)-induced cystitis is a challenging clinical problem involving inflammation and dysfunction of bladder. Trimetazidine (TMZ) is an anti-anginal drug with anti-oxidant and anti-inflammatory properties. We aimed to investigate the protective effects of TMZ in CP-induced cystitis via inhibiting TLR4/NFκB signaling. MAIN METHODS Balb/c mice were administrated TMZ (10 or 20 mg/kg/day) intraperitoneally (i.p.) for 5 consecutive days before CP. On day 6, cystitis was induced by a single dose of CP (300 mg/kg, i.p.). Mesna (2-mercaptoethane sulfonate sodium; 30 mg/kg, i.p.) was administered 20 min before and at 4 and 8 h after the CP injection. After 24 h of cystitis induction, the bladders were removed for histopathological evaluation, contractility studies, biochemical analysis and western blotting. MTT assay was performed in a cancer cell line (MDA-MB-231) to evaluate the effect of TMZ on the cytotoxicity of CP. KEY FINDINGS CP-induced severe cystitis was confirmed by histological disturbances and the decrease in carbachol-evoked contractions of detrusor strips, which was partially improved by TMZ (20 mg/kg/day). SOD activity and GSH content were decreased whereas TNF-α and IL-1β levels were increased in the bladders of CP-treated mice, which were restored by TMZ or mesna. TMZ reduced the CP-induced increase in the protein expressions of caspase-3, TLR4 and phosphorylated-NFκB in bladder tissues. TMZ alone decreased the cell viability and TMZ also enhanced the cytotoxicity of CP. SIGNIFICANCE Our study provides the first preclinical evidence that TMZ attenuates CP-induced urotoxicity by enhancing anti-oxidant capacity and suppressing inflammation possibly via downregulating TLR4-mediated NFκB signaling while augmenting the cytotoxicity of CP.
Collapse
Affiliation(s)
- Seçkin Engin
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkiye.
| | - Elif Nur Barut
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkiye
| | - Yeşim Kaya Yaşar
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkiye; Drug and Pharmaceutical Technology Application and Research Center, Karadeniz Technical University, Trabzon, Turkiye
| | - Aysun Çelik Soysal
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Bülent Ecevit University, Zonguldak, Turkiye
| | - Tuğba Arıcı
- Başaksehir Cam and Sakura City Hospital, İstanbul, Turkiye
| | - Gökçen Kerimoğlu
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkiye
| | - Mine Kadıoğlu
- Department of Medical Pharmacology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkiye
| | - Sena F Sezen
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkiye; Drug and Pharmaceutical Technology Application and Research Center, Karadeniz Technical University, Trabzon, Turkiye
| |
Collapse
|
16
|
Al-Shorbagy MY, Wadie W, El-Tanbouly DM. Trimetazidine Modulates Mitochondrial Redox Status and Disrupted Glutamate Homeostasis in a Rat Model of Epilepsy. Front Pharmacol 2021; 12:735165. [PMID: 34690772 PMCID: PMC8531497 DOI: 10.3389/fphar.2021.735165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/31/2021] [Indexed: 01/25/2023] Open
Abstract
Mitochondrial oxidative status exerts an important role in modulating glia–neuron interplay during epileptogenesis. Trimetazidine (TMZ), a well-known anti-ischemic drug, has shown promising potential against a wide range of neurodegenerative disorders including epilepsy. Nevertheless, the exact mechanistic rationale behind its anti-seizure potential has not been fully elucidated yet. Herein, the impact of TMZ against mitochondrial oxidative damage as well as glutamate homeostasis disruption in the hippocampus has been investigated in rats with lithium/pilocarpine (Li/PIL) seizures. Animals received 3 mEq/kg i.p. LiCl3 followed by PIL (single i.p.; 150 mg/kg) 20 h later for induction of seizures with or without TMZ pretreatment (25 mg/kg; i.p.) for five consecutive days. Seizure score and seizure latency were observed. Mitochondrial redox status as well as ATP and uncoupling protein 2 was recorded. Moreover, glutamate homeostasis was unveiled. The present findings demonstrate the TMZ-attenuated Li/PIL seizure score and latency. It improved mitochondrial redox status, preserved energy production mechanisms, and decreased reactive astrocytes evidenced as decreased glial fibrillary acidic protein immune-stained areas in hippocampal tissue. In addition, it modulated phosphorylated extracellular signal-regulated kinases (p-ERK1/2) and p-AMP–activated protein kinase (p-AMPK) signaling pathways to reflect a verified anti-apoptotic effect. Consequently, it upregulated mRNA expression of astroglial glutamate transporters and reduced the elevated glutamate level. The current study demonstrates that TMZ exhibits robust anti-seizure and neuroprotective potentials. These effects are associated with its ability to modulate mitochondrial redox status, boost p-ERK1/2 and p-AMPK signaling pathways, and restore glutamate homeostasis in hippocampus.
Collapse
Affiliation(s)
- Muhammad Y Al-Shorbagy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates
| | - Walaa Wadie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Dalia M El-Tanbouly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
17
|
Luo XY, Zhong Z, Chong AG, Zhang WW, Wu XD. Function and Mechanism of Trimetazidine in Myocardial Infarction-Induced Myocardial Energy Metabolism Disorder Through the SIRT1-AMPK Pathway. Front Physiol 2021; 12:645041. [PMID: 34220528 PMCID: PMC8248253 DOI: 10.3389/fphys.2021.645041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/14/2021] [Indexed: 02/04/2023] Open
Abstract
Myocardial energy metabolism (MEM) is an important factor of myocardial injury. Trimetazidine (TMZ) provides protection against myocardial ischemia/reperfusion injury. The current study set out to evaluate the effect and mechanism of TMZ on MEM disorder induced by myocardial infarction (MI). Firstly, a MI mouse model was established by coronary artery ligation, which was then treated with different concentrations of TMZ (5, 10, and 20 mg kg-1 day-1). The results suggested that TMZ reduced the heart/weight ratio in a concentration-dependent manner. TMZ also reduced the levels of Bax and cleaved caspase-3 and promoted Bcl-2 expression. In addition, TMZ augmented adenosine triphosphate (ATP) production and superoxide dismutase (SOD) activity induced by MI and decreased the levels of lipid peroxide (LPO), free fatty acids (FFA), and nitric oxide (NO) in a concentration-dependent manner (all P < 0.05). Furthermore, an H2O2-induced cell injury model was established and treated with different concentrations of TMZ (1, 5, and 10 μM). The results showed that SIRT1 overexpression promoted ATP production and reactive oxygen species (ROS) activity and reduced the levels of LPO, FFA, and NO in H9C2 cardiomyocytes treated with H2O2 and TMZ. Silencing SIRT1 suppressed ATP production and ROS activity and increased the levels of LPO, FFA, and NO (all P < 0.05). TMZ activated the SIRT1-AMPK pathway by increasing SIRT1 expression and AMPK phosphorylation. In conclusion, TMZ inhibited MI-induced myocardial apoptosis and MEM disorder by activating the SIRT1-AMPK pathway.
Collapse
Affiliation(s)
- Xiu-Ying Luo
- Department of Cardiology, The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, Hangzhou, China
| | - Ze Zhong
- Department of Cardiology, The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, Hangzhou, China
| | - Ai-Guo Chong
- Department of Cardiology, The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, Hangzhou, China
| | - Wei-Wei Zhang
- Department of Cardiology, The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, Hangzhou, China
| | - Xin-Dong Wu
- Department of Cardiology, The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
18
|
Shaker SR, Al-Amran F, Fatima G, Al-Aubaid H, Hadi NR. Trimetazidine Improves the Outcome of EECP Therapy in Patients with Refractory Angina Pectoris. Med Arch 2020; 74:199-204. [PMID: 32801436 PMCID: PMC7406001 DOI: 10.5455/medarh.2020.74.199-204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Introduction: Cardiovascular disease (CAD) associated with death and disability remains a serious medical problem. In some patients the initial clinical coronary artery disease presentation is stable angina pectoris. Aim: The aim of the study was to evaluate the effect of EECP therapy with or without trimetazidine (TMZ) in patients with refractory angina via modulating peripheral monocyte expression of Toll like receptor2 (TLR2) and its downstream signaling. Methods: This is a double-blind randomized prospective study in which 88 stable refractory angina patients allocated into two groups, Enhanced External Counter Pulsation (EECP) group: included 44 patients with stable refractory angina, and were treated with EECP-Therapy. TMZ-EECP group: included 44 patients with stable refractory angina, we gave TMZ 35 mg twice daily in addition to EECP-Therapy. Results: TLR2 expression in peripheral monocyte investigated by flow cytometry and 8-iso-prostaglandin F2β (8-iso-PGF2 β), interleukin1β (IL-1β), heat shock protein 60 (HSP60) and monocytes chemoattractant protein-1(MCP-1) were also measured before the EECP-therapy and before giving TMZ to patients, and after 35 hours of EECP treatment (7 consecutive weeks). Inhibition in TLR2 expression in peripheral monocyte was observed among the EECP group (P<0.05). Inflammatory cytokine MCP-1 was remarkably decreased in both study groups but (heat shock protein 60 (HSP60), MCP-1 and interleukin-1β (IL-1β)) significantly decreased levels were observed among the TMZ-EECP group (P<0.05). Also, the oxidative stress biomarker 8-iso-prostaglandin F2β (8-iso-PGF2β) was decreased in both study groups but significantly decreased levels were observed among the TMZ-EECP group (P<0.05). TMZ and EECP therapy in patients with stable refractory angina remarkably decreased the inflammatory markers HSP60, MCP-1 and IL-1β in serum levels also the decreased levels were found in serum levels of oxidative stress marker 8-iso-PGF2β serum level. Conclusion: EECP-therapy decreased the expression of TLR2 on peripheral monocytes in patients with chronic stable refractory angina which yield improvement in the quality of patients’ life by decreasing the frequency of angina episodes, decreasing the Short-acting nitrate use and change the exercise tolerance and distance.
Collapse
Affiliation(s)
- Saad Rasool Shaker
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Iraq
| | - Fadhil Al-Amran
- Department of Cardiothoracic Surgery, Faculty of Medicine, University of Kufa
| | - Ghizal Fatima
- Department of Biotechnology, Era University, Lucknow, India
| | | | - Najah R Hadi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Iraq
| |
Collapse
|
19
|
Elgarhi R, Shehata MM, Abdelsameea AA, Salem AE. Effects of Diclofenac Versus Meloxicam in Pentylenetetrazol-Kindled Mice. Neurochem Res 2020; 45:1913-1919. [PMID: 32405761 DOI: 10.1007/s11064-020-03054-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/21/2020] [Accepted: 05/09/2020] [Indexed: 12/15/2022]
Abstract
Epilepsy comes after stroke as the most common chronic neurological disorder worldwide. Inflammation enhances neuronal hyperexcitability that could provide a background setting for the development of epilepsy. The aim of this study was to assess the effect of valproate (VAL), diclofenac (DIC), meloxicam (MEL), VAL + MEL and VAL + DIC in pentylenetetrazol (PTZ) kindled mice. Seventy mice were randomly allocated into 7 equal groups; Control, PTZ, VAL, DIC, MEL, VAL + MEL and VAL + DIC groups. Kindling was induced by PTZ (40 mg/kg, i.p.) injection every other day for 17 days. The drugs were administered, 30 min before each PTZ injection till the end of the schedule. Seizure score, latency, duration and mortality rate were recorded in all groups. Tumor necrosis factor- α (TNF-α), interleukin-1β (IL-1β), malondialdehyde (MDA) and prostaglandin E2 (PGE2) levels as well as reduced glutathione (GSH) content were assessed in brain homogenate at the end of the schedule. VAL, DIC, MEL, VAL + MEL and VAL + DIC decreased seizure score and duration. Meanwhile, they increased the latency period. PTZ increased TNF-α, IL-1β, MDA, and PGE2 levels meanwhile, it decreased GSH content. Administration of VAL, DIC, MEL, VAL + MEL and VAL + DIC decreased TNF-α, IL-1β, MDA, and PGE2 levels meanwhile, they increased GSH content in the brain homogenates. Effects of VAL + DIC combination on the studied parameters were significant in relation to VAL. VAL, DIC, MEL, VAL + MEL and VAL + DIC produced anticonvulsant effect and mitigated inflammation and oxidative stress in PTZ-kindled mice. Interestingly, DIC rather than MEL enhanced the anticonvulsant effect VAL.
Collapse
Affiliation(s)
- Reham Elgarhi
- Department of Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed M Shehata
- Department of Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed A Abdelsameea
- Department of Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia.
| | - Amal E Salem
- Department of Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
20
|
Metformin and trimetazidine ameliorate diabetes-induced cognitive impediment in status epileptic rats. Epilepsy Behav 2020; 104:106893. [PMID: 32000097 DOI: 10.1016/j.yebeh.2019.106893] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/24/2019] [Accepted: 12/24/2019] [Indexed: 02/06/2023]
Abstract
Patients with diabetes and epilepsy are more prone to cognitive impairment, dementia, and even Alzheimer's disease. Diabetes-induced inflammatory process is one of the main contributing factors; however, the impact on seizure is not clear. The current study is aimed to examine the role of metformin and trimetazidine in the reduction of neuronal damage caused by inflammatory mediators and apoptotic factors in diabetic epileptic rodent model. Diabetic epileptic rats received orally either metformin (100 mg/kg) or trimetazidine (10 mg/kg) for 3 weeks exhibited reduced cognitive function and ameliorated the disturbed brain neurotransmission. Besides, they improved both the inflammatory status and the histopathologic alterations. Administration of metformin or trimetazidine ameliorated the deterioration in cognitive function in Morris water maze (MWM) and reduced seizure score. Furthermore, brain neurotransmitters glutamate and γ-aminobutyric acid (GABA) were reverted back to their normal values. Both treatments reduced the rise in inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), apoptotic markers nuclear factor-κB (NF-κB) and caspase-3, and improved the pathological photomicrograph of the hippocampus of diabetic epileptic rats. Such effects were closely correlated to the observed increase in the adenosine triphosphate and adenosine diphosphate (ATP/ADP) ratio and reduction of death-associated protein (DAP) and mammalian target of rapamycin (mTOR). In conclusion, the current study shed light on the potential neuroprotective role of metformin and trimetazidine in the amelioration of cognitive function via hindering inflammatory processes in diabetic epileptic rats.
Collapse
|
21
|
de Souza AG, Chaves Filho AJM, Souza Oliveira JV, de Souza DAA, Lopes IS, de Carvalho MAJ, de Lima KA, Florenço Sousa FC, Mendes Vasconcelos SM, Macedo D, de França Fonteles MM. Prevention of pentylenetetrazole-induced kindling and behavioral comorbidities in mice by levetiracetam combined with the GLP-1 agonist liraglutide: Involvement of brain antioxidant and BDNF upregulating properties. Biomed Pharmacother 2019; 109:429-439. [DOI: 10.1016/j.biopha.2018.10.066] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 12/24/2022] Open
|
22
|
Asadi S, Roohbakhsh A, Shamsizadeh A, Fereidoni M, Kordijaz E, Moghimi A. The effect of intracerebroventricular administration of orexin receptor type 2 antagonist on pentylenetetrazol-induced kindled seizures and anxiety in rats. BMC Neurosci 2018; 19:49. [PMID: 30103703 PMCID: PMC6090721 DOI: 10.1186/s12868-018-0445-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 07/17/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Current antiepileptic drugs are not able to prevent recurrent seizures in all patients. Orexins are excitatory hypothalamic neuropeptides that their receptors (Orx1R and Orx2R) are found almost in all major regions of the brain. Pentylenetetrazol (PTZ)-induced kindling is a known experimental model for epileptic seizures. The purpose of this study was to evaluate the effect of Orx2 receptor antagonist (TCS OX2 29) on seizures and anxiety of PTZ-kindled rats. RESULTS Our results revealed that similar to valproate, administration of 7 µg/rat of TCS OX2 29 increased the latency period and decreased the duration time of 3rd and 4th stages of epileptiform seizures. Besides, it significantly decreased mean of seizure scores. However, TCS OX2 29 did not modulate anxiety induced by repeated PTZ administration. CONCLUSION This study showed that blockade of Orx2 receptor reduced seizure-related behaviors without any significant effect on PTZ-induced anxiety.
Collapse
Affiliation(s)
- Saeedeh Asadi
- Department of Biology, Rayan Center for Neuroscience and Behavior, Faculty of Science, Ferdowsi University of Mashhad, P.O. Box 9177948974, Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shamsizadeh
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Masoud Fereidoni
- Department of Biology, Rayan Center for Neuroscience and Behavior, Faculty of Science, Ferdowsi University of Mashhad, P.O. Box 9177948974, Mashhad, Iran
| | - Elham Kordijaz
- Department of Biology, Rayan Center for Neuroscience and Behavior, Faculty of Science, Ferdowsi University of Mashhad, P.O. Box 9177948974, Mashhad, Iran
| | - Ali Moghimi
- Department of Biology, Rayan Center for Neuroscience and Behavior, Faculty of Science, Ferdowsi University of Mashhad, P.O. Box 9177948974, Mashhad, Iran.
| |
Collapse
|
23
|
Gong W, Ma Y, Li A, Shi H, Nie S. Trimetazidine suppresses oxidative stress, inhibits MMP-2 and MMP-9 expression, and prevents cardiac rupture in mice with myocardial infarction. Cardiovasc Ther 2018; 36:e12460. [PMID: 30019466 DOI: 10.1111/1755-5922.12460] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/28/2018] [Accepted: 07/14/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIMS Cardiac rupture (CR) is a catastrophic complication of acute myocardial infarction (MI). At present, there are no effective pharmacological strategies for preventing post-MI rupture. Here we investigated the effect of trimetazidine (TMZ) on post-MI CR. METHODS MI models were induced by left coronary artery ligation in male C57BL/6 mice. Animals allocated to the rupture incidence were closely monitored for 7 days; autopsy was performed once animals were found dead to determine the reason of death. Heart function was detected by echocardiography. Oxidative stress markers and matrix metalloproteinases (MMPs) were analyzed by Western Blotting. RESULTS TMZ markedly reduced the post-MI CR incidence of mice. We found that the expression of metalloproteinase (MMP) -2 and MMP-9 in the TMZ-treated group was significantly lower than the saline-treated group. Further, TMZ markedly attenuated MI-induced oxidative stress. To investigate the mechanism of the effect of TMZ on CR, we pretreated H9c2 cells with H2 O2 and found that TMZ treatment markedly decreased H2 O2 -induced MMP-2 and MMP-9 expression. TMZ prevents CR through inhibition of oxidative stress, which is attributable to the down-regulation of MMP-2, MMP-9 expression. CONCLUSIONS Our findings indicate that TMZ suppresses oxidative stress, inhibits MMP-2 and MMP-9 expression, and prevents CR in mice with MI.
Collapse
Affiliation(s)
- Wei Gong
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Youcai Ma
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Aobo Li
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Han Shi
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Shaoping Nie
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
24
|
Pijet B, Stefaniuk M, Kostrzewska-Ksiezyk A, Tsilibary PE, Tzinia A, Kaczmarek L. Elevation of MMP-9 Levels Promotes Epileptogenesis After Traumatic Brain Injury. Mol Neurobiol 2018; 55:9294-9306. [PMID: 29667129 PMCID: PMC6208832 DOI: 10.1007/s12035-018-1061-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/03/2018] [Indexed: 12/24/2022]
Abstract
Posttraumatic epilepsy (PTE) is a recurrent seizure disorder that often develops secondary to traumatic brain injury (TBI) that is caused by an external mechanical force. Recent evidence shows that the brain extracellular matrix plays a major role in the remodeling of neuronal connections after injury. One of the proteases that is presumably responsible for this process is matrix metalloproteinase-9 (MMP-9). The levels of MMP-9 are elevated in rodent brain tissue and human blood samples after TBI. However, no studies have described the influence of MMP-9 on the development of PTE. The present study used controlled cortical impact (CCI) as a mouse model of TBI. We examined the detailed kinetics of MMP-9 levels for 1 month after TBI and observed two peaks after injury (30 min and 6 h after injury). We tested the hypothesis that high levels of MMP-9 predispose individuals to the development of PTE, and MMP-9 inhibition would protect against PTE. We used transgenic animals with either MMP-9 knockout or MMP-9 overexpression. MMP-9 overexpression increased the number of mice that exhibited TBI-induced spontaneous seizures, and MMP-9 knockout decreased the appearance of seizures. We also evaluated changes in responsiveness to a single dose of the chemoconvulsant pentylenetetrazol. MMP-9-overexpressing mice exhibited a significantly shorter latency between pentylenetetrazol administration and the first epileptiform spike. MMP-9 knockout mice exhibited the opposite response profile. Finally, we found that the occurrence of PTE was correlated with the size of the lesion after injury. Overall, our data emphasize the contribution of MMP-9 to TBI-induced structural and physiological alterations in brain circuitry that may lead to the development of PTE.
Collapse
Affiliation(s)
- Barbara Pijet
- Laboratory of Neurobiology, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Pasteura 3, 02-093, Warsaw, Poland.
| | - Marzena Stefaniuk
- Laboratory of Neurobiology, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Pasteura 3, 02-093, Warsaw, Poland
| | - Agnieszka Kostrzewska-Ksiezyk
- Laboratory of Neurobiology, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Pasteura 3, 02-093, Warsaw, Poland
| | - Photini-Effie Tsilibary
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55405, USA.,Brain Sciences Center, Minneapolis, MN, 55417, USA
| | - Athina Tzinia
- Laboratory of Cell and Matrix Pathobiology, Institute of Bioscience and Applications, NCSR Demokritos, 153 10 Aghia Paraskevi Attikis, Athens, Greece
| | - Leszek Kaczmarek
- Laboratory of Neurobiology, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Pasteura 3, 02-093, Warsaw, Poland.
| |
Collapse
|
25
|
Therapeutic evaluation of solid lipid nanoparticle of quercetin in pentylenetetrazole induced cognitive impairment of zebrafish. Life Sci 2018. [DOI: 10.1016/j.lfs.2018.03.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Reddy AJ, Dubey AK, Handu SS, Sharma P, Mediratta PK, Ahmed QM, Jain S. Anticonvulsant and Antioxidant Effects of Musa sapientum Stem Extract on Acute and Chronic Experimental Models of Epilepsy. Pharmacognosy Res 2018; 10:49-54. [PMID: 29568187 PMCID: PMC5855373 DOI: 10.4103/pr.pr_31_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: Musa sapientum (banana) plant extract has been shown to possess antioxidant activity in previous studies. Neuronal injury resulting from oxidative stress is an important factor involved in pathogenesis of epilepsy. Objective: The present study aimed to evaluate the anticonvulsant activity of M. sapientum stem extract (MSSE) in acute and chronic experimental models in mice and its effects on various markers of oxidative stress in the brain of pentylenetetrazole (PTZ)-kindled animals. Material and Methods: Maximal electroshock seizures (MES) and PTZ-induced convulsion models were used for acute studies. For the chronic study, the effect of MSSE on the development of kindling was studied. For the evaluation of the effects of MSSE on oxidative stress in brain, malondialdehyde (MDA) and reduced glutathione (GSH) levels were estimated in the brains of the kindled animals. Results: MSSE significantly increased the latency to onset of myoclonic jerks and the duration of clonic convulsions following PTZ administration. The MSSE pretreated group showed significantly reduced mean seizure score on PTZ-induced kindling. There was a significant increase in the brain MDA levels and decrease in GSH levels in response to PTZ-induced kindling. On MSSE pretreatment, there was a significant decrease in the MDA levels in the brains, though the increase in the GSH levels was not significant. Conclusion: The results from this study suggest the presence of significant anticonvulsant activity in MSSE, in both acute and chronic PTZ-induced seizure models, which could be due to its antioxidant activity, as is reflected by the change in oxidative stress markers in brain. SUMMARY Evaluation of the anticonvulsant activity of Musa sapientum and its effects on various markers of oxidative stress in the brain has not been done previously to the best of our knowledge M. sapientum stem extract (MSSE) significantly increased the latency to onset of myoclonic jerks and the duration of clonic convulsions in the experimental models The MSSE pretreated group showed significantly reduced mean seizure score on pentylenetetrazole (PTZ)-induced kindling There was significant increase in the brain malondialdehyde (MDA) levels and decrease in glutathione (GSH) levels in response to PTZ-induced kindling On MSSE pretreatment, there was a significant decrease in the MDA levels in the brain, though the increase in the GSH levels was not significant.
Abbreviations Used: MSSE: Musa sapientum stem extract, PTZ: Pentylenetetrazole, MES: Maximal electroshock seizures, MDA: Malondialdehyde, GSH: Glutathione, SOD: Superoxide dismutase, THLE: Tonic hindlimb extension
Collapse
Affiliation(s)
- Aditya J Reddy
- Department of Pharmacology, SMS and R, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Ashok Kumar Dubey
- Department of Pharmacology, SMS and R, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Shailendra S Handu
- Department of Pharmacology, SMS and R, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Prashant Sharma
- Department of Pharmacology, SMS and R, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Pramod K Mediratta
- Department of Pharmacology, SMS and R, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Qazi Mushtaq Ahmed
- Department of Pharmacology, SMS and R, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Seema Jain
- Department of Pharmacology, UCMS, New Delhi, India
| |
Collapse
|
27
|
Sedky AA, El Serafy OMH, Hassan OA, Abdel-Kawy HS, Hasanin AH, Raafat MH. Trimetazidine potentiates the antiepileptic activity and ameliorates the metabolic changes associated with pentylenetetrazole kindling in rats treated with valproic acid. Can J Physiol Pharmacol 2017; 95:686-696. [PMID: 28177664 DOI: 10.1139/cjpp-2016-0263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidative stress is implicated in epileptogenesis as well as in the metabolic changes associated with increased risk of atherosclerotic vascular disease in epilepsy. The present work investigated the impact of the antioxidant trimetazidine (TMZ) on the antiepileptic activity of valproic acid (VPA) and on the metabolic and histological changes in hippocampal, aortic, and hepatic tissues associated with epilepsy and (or) VPA. Rats were divided into non-pentylenetetrazole (non-PTZ) group subdivided into control and VPA-treated groups, and PTZ-treated group subdivided into PTZ, PTZ/VPA, PTZ/TMZ, and PTZ/VPA + TMZ groups. VPA treatment in PTZ rats resulted in an antioxidant effect with improvement in oxidative stress, metabolic and histopathological changes induced by PTZ in hippocampus, aortic, and hepatic tissues. TMZ exhibited anticonvulsant activity and potentiated the anticonvulsant effect of VPA. Combination of TMZ with VPA induced a greater reduction in oxidative stress, improvement in the metabolic and histopathological changes compared to VPA treatment. In contrast, VPA administration in non-PTZ-treated rats induced a pro-oxidative effect, associated with metabolic and histopathological changes in aortic and hepatic tissues. These findings suggest that co-administration of TMZ with VPA in epilepsy might antagonize not only the oxidative stress associated with epilepsy but might also counteract a potential pro-oxidative effect of VPA.
Collapse
Affiliation(s)
- Amina Ahmed Sedky
- a Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Olfat Ahmed Hassan
- a Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hala Salah Abdel-Kawy
- a Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amany Helmy Hasanin
- a Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mona Hussein Raafat
- b Department of Histology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
28
|
Kordi Jaz E, Moghimi A, Fereidoni M, Asadi S, Shamsizadeh A, Roohbakhsh A. SB-334867, an orexin receptor 1 antagonist, decreased seizure and anxiety in pentylenetetrazol-kindled rats. Fundam Clin Pharmacol 2016; 31:201-207. [DOI: 10.1111/fcp.12249] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/30/2016] [Accepted: 10/11/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Elham Kordi Jaz
- Department of Biology; Faculty of Sciences; Ferdowsi University of Mashhad; Azadi Sq. Mashhad Iran
| | - Ali Moghimi
- Department of Biology; Faculty of Sciences; Ferdowsi University of Mashhad; Azadi Sq. Mashhad Iran
| | - Masoud Fereidoni
- Department of Biology; Faculty of Sciences; Ferdowsi University of Mashhad; Azadi Sq. Mashhad Iran
| | - Saeedeh Asadi
- Department of Biology; Faculty of Sciences; Ferdowsi University of Mashhad; Azadi Sq. Mashhad Iran
| | - Ali Shamsizadeh
- Physiology-Pharmacology Research Center and Department of Physiology and Pharmacology; School of Medicine; Rafsanjan University of Medical Sciences; Pistachio Co Street Rafsanjan Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center; Mashhad University of Medical Sciences; Azadi Square Mashhad Iran
- School of Pharmacy; Mashhad University of Medical Sciences; Azadi Square Mashhad Iran
| |
Collapse
|
29
|
Tambe R, Jain P, Patil S, Ghumatkar P, Sathaye S. Antiepileptogenic effects of borneol in pentylenetetrazole-induced kindling in mice. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:467-75. [DOI: 10.1007/s00210-016-1220-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/09/2016] [Indexed: 01/10/2023]
|
30
|
Atli O, Demir-Ozkay U, Ilgin S, Aydin TH, Akbulut EN, Sener E. Evidence for neurotoxicity associated with amoxicillin in juvenile rats. Hum Exp Toxicol 2015; 35:866-76. [PMID: 26429924 DOI: 10.1177/0960327115607948] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Amoxicillin (AMX) is one of the most commonly prescribed antibiotics for children, and childhood is the period to have the highest risk for toxicity cases including drug-induced adverse reactions. Some neurological adverse effects (anxiety, hyperactivity, confusion, convulsions, and behavioral changes) have been reported related to AMX treatment. In the present study, we aimed to determine the neurotoxic effects of AMX administration at clinically relevant doses in female juvenile rats. AMX was administered in single oral daily doses of 25 and 50 mg/kg for 14 days. According to our results, while AMX administration caused a significant increase in the immobility time of animals, swimming time of these animals significantly decreased. AMX administration significantly reduced the onset of pentylenetetrazole-induced convulsions. The serotonin levels of brain tissues in the AMX-administered groups were decreased significantly, which is thought to be related to depression. The glutamate levels in brain tissues increased significantly in AMX-administered groups, which is thought to be related to convulsion. Otherwise, superoxide dismutase and catalase activities were significantly decreased in brain tissues of AMX-administered groups. In conclusion, AMX administration triggered depression and shortened the time of the appearance of first seizure in juvenile rats. Also, altered brain neurotransmitter levels and increased oxidative stress observed in our study were thought to be the possible underlying mechanisms of AMX-induced neurotoxicity.
Collapse
Affiliation(s)
- O Atli
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| | - U Demir-Ozkay
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| | - S Ilgin
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| | - T H Aydin
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| | - E N Akbulut
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| | - E Sener
- Department of Analytical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| |
Collapse
|
31
|
Characterization of anticonvulsant and antiepileptogenic potential of thymol in various experimental models. Naunyn Schmiedebergs Arch Pharmacol 2013; 387:59-66. [PMID: 24065087 DOI: 10.1007/s00210-013-0917-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 09/08/2013] [Indexed: 12/12/2022]
Abstract
The present study was to investigate the anticonvulsant and antiepileptogenic potential of thymol. Anticonvulsant activity of thymol (5-100 mg/kg i.p.) was studied using maximal electroshock, pentylenetetrazole (PTZ), strychnine and 4-aminopyridine (4-AP) models. Thymol at the selected dose was also studied for its effect on locomotion. Antiepileptogenic property of thymol (5-25 mg/kg) was evaluated using PTZ-induced kindling model along with its effect on malondialdehyde and glutathione levels. Thymol (50 and 100 mg/kg, i.p.) showed anticonvulsant activity against maximal electroshock and pentylenetetrazole (66.66 and 83.33 % protection at 50 and 100 mg/kg, respectively) model but not against strychnine and 4-aminopyridine models. Thymol exhibited decreased locomotor activity in dose-dependent manner at the same dose range. Thymol at the dose of (25 mg/kg, i.p.) significantly decreased the seizure score, increased glutathione levels and decreased malondialdehyde levels in pentylenetetrazole-induced kindling model. Thymol exhibited significant anticonvulsant and antiepileptogenic property.
Collapse
|
32
|
Aguiar CCT, Almeida AB, Araújo PVP, Vasconcelos GS, Chaves EMC, do Vale OC, Macêdo DS, Leal LKAM, de Barros Viana GS, Vasconcelos SMM. Effects of agomelatine on oxidative stress in the brain of mice after chemically induced seizures. Cell Mol Neurobiol 2013; 33:825-35. [PMID: 23801192 PMCID: PMC11498010 DOI: 10.1007/s10571-013-9949-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 06/05/2013] [Indexed: 12/19/2022]
Abstract
Agomelatine is a novel antidepressant drug with melatonin receptor agonist and 5-HT(2C) receptor antagonist properties. We analyzed whether agomelatine has antioxidant properties. Antioxidant activity of agomelatine (25, 50, or 75 mg/kg, i.p.) or melatonin (50 mg/kg) was investigated by measuring lipid peroxidation levels, nitrite content, and catalase activities in the prefrontal cortex, striatum, and hippocampus of Swiss mice pentylenetetrazole (PTZ) (85 mg/kg, i.p.), pilocarpine (400 mg/kg, i.p.), picrotoxin (PTX) (7 mg/kg, i.p.), or strychnine (75 mg/kg, i.p.) induced seizure models. In the pilocarpine-induced seizure model, all dosages of agomelatine or melatonin showed a significant decrease in TBARS levels and nitrite content in all brain areas when compared to controls. In the strychnine-induced seizure model, all dosages of agomelatine and melatonin decreased TBARS levels in all brain areas, and agomelatine at low doses (25 or 50 mg/kg) and melatonin decreased nitrite contents, but only agomelatine at 25 or 50 mg/kg showed a significant increase in catalase activity in three brain areas when compared to controls. Neither melatonin nor agomelatine at any dose have shown no antioxidant effects on parameters of oxidative stress produced by PTX- or PTZ-induced seizure models when compared to controls. Our results suggest that agomelatine has antioxidant activity as shown in strychnine- or pilocarpine-induced seizure models.
Collapse
Affiliation(s)
- Carlos Clayton Torres Aguiar
- School of Medicine, University of Fortaleza (UNIFOR)/RENORBIO, Rua Desembargador Floriano Benevides Magalhães, 221 3º Andar, Fortaleza, Ceará, 60811-690, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Mukherjee S, Zeitouni S, Cavarsan CF, Shapiro LA. Increased seizure susceptibility in mice 30 days after fluid percussion injury. Front Neurol 2013; 4:28. [PMID: 23519723 PMCID: PMC3604640 DOI: 10.3389/fneur.2013.00028] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 03/03/2013] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) has been reported to increase seizure susceptibility and also contribute to the development of epilepsy. However, the mechanistic basis of the development of increased seizure susceptibility and epilepsy is not clear. Though there is substantial work done using rats, data are lacking regarding the use of mice in the fluid percussion injury (FPI) model. It is unclear if mice, like rats, will experience increased seizure susceptibility following FPI. The availability of a mouse model of increased seizure susceptibility after FPI would provide a basis for the use of genetically modified mice to study mechanism(s) of the development of post-traumatic epilepsy. Therefore, this study was designed to test the hypothesis that, mice subjected to a FPI develop increased seizure susceptibility to a subconvulsive dose of the chemoconvulsant, pentylenetetrazole (PTZ). Three groups of mice were used: FPI, sham, and naïve controls. On day 30 after FPI, mice from the three groups were injected with PTZ. The results showed that FPI mice exhibited an increased severity, frequency, and duration of seizures in response to PTZ injection compared with the sham and naïve control groups. Histopathological assessment was used to characterize the injury at 1, 3, 7, and 30 days after FPI. The results show that mice subjected to the FPI had a pronounced lesion and glial response that was centered at the FPI focus and peaked at 3 days. By 30 days, only minimal evidence of a lesion is observed, although there is evidence of a chronic glial response. These data are the first to demonstrate an early increase in seizure susceptibility following FPI in mice. Therefore, future studies can incorporate transgenic mice into this model to further elucidate mechanisms of TBI-induced increases in seizure susceptibility.
Collapse
Affiliation(s)
- Sanjib Mukherjee
- Department of Surgery, Scott and White Hospital Temple, TX, USA ; Central Texas Veterans Health Care System Temple, TX, USA
| | | | | | | |
Collapse
|
34
|
Martinc B, Grabnar I, Vovk T. The role of reactive species in epileptogenesis and influence of antiepileptic drug therapy on oxidative stress. Curr Neuropharmacol 2012; 10:328-43. [PMID: 23730257 PMCID: PMC3520043 DOI: 10.2174/157015912804143504] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/23/2012] [Accepted: 09/03/2012] [Indexed: 01/09/2023] Open
Abstract
Epilepsy is considered one of the most common neurological disorders. The focus of this review is the acquired form of epilepsy, with the development process consisting of three major phases, the acute injury phase, the latency epileptogenesis phase, and the phase of spontaneous recurrent seizures. Nowadays, an increasing attention is paid to the possible interrelationship between oxidative stress resulting in disturbance of physiological signalling roles of calcium and free radicals in neuronal cells and mitochondrial dysfunction, cell damage, and epilepsy. The positive stimulation of mitochondrial calcium signals by reactive oxygen species and increased reactive oxygen species generation resulting from increased mitochondrial calcium can lead to a positive feedback loop. We propose that calcium can pose both, physiological and pathological effects of mitochondrial function, which can lead in neuronal cell death and consequent epileptic seizures. Various antiepileptic drugs may impair the endogenous antioxidative ability to prevent oxidative stress. Therefore, some antiepileptic drugs, especially from the older generation, may trigger oxygen-dependent tissue injury. The prooxidative effects of these antiepileptic drugs might lead to enhancement of seizure activity, resulting in loss of their efficacy or apparent functional tolerance and undesired adverse effects. Additionally, various reactive metabolites of antiepileptic drugs are capable of covalent binding to macromolecules which may lead to deterioration of the epileptic seizures and systemic toxicity. Since neuronal loss seems to be one of the major neurobiological abnormalities in the epileptic brain, the ability of antioxidants to attenuate seizure generation and the accompanying changes in oxidative burden, further support an important role of antioxidants as having a putative antiepileptic potential.
Collapse
Affiliation(s)
| | | | - Tomaž Vovk
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
35
|
Park WH, Chae YJ, Soh KS, Lee BC, Pyo MY. Inhibition of pentylenetetrazole-induced seizure in mice by using a 4 Hz magnetic field: a comparative study with a 60 Hz magnetic field. Electromagn Biol Med 2012; 31:293-8. [DOI: 10.3109/15368378.2012.662191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Won-Hee Park
- Pharmaceutical Analysis Team, Seoul Metropolitan Government Research Institute of Public Health & Environment, Seoul, Korea
| | - Young-Joo Chae
- Pharmaceutical Analysis Team, Seoul Metropolitan Government Research Institute of Public Health & Environment, Seoul, Korea
| | - Kwang-Sup Soh
- Nano Primo Research Center, Advanced Institute of Convergence Technology, Seoul National University,
Suwon, Korea
| | - Byung-Cheon Lee
- Ki Primo Research Laboratory, KI for Information Technology Convergence, Division of Electrical Engineering, Korea Advanced Institute of Science and Technology,
Daejeon, Korea
- Pharmacopuncture Medical Research Institute, Korean Pharmacopuncture Institute,
Seoul, Korea
| | - Myoung-Yun Pyo
- Laboratory of Hygienic Pharmacy, College of Pharmacy, Sookmyung Women's University,
Seoul, Korea
| |
Collapse
|
36
|
Involvement of glutamate, oxidative stress and inducible nitric oxide synthase in the convulsant activity of ciprofloxacin in mice. Eur J Pharmacol 2012; 685:30-7. [DOI: 10.1016/j.ejphar.2012.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 04/02/2012] [Accepted: 04/05/2012] [Indexed: 02/07/2023]
|
37
|
Ruby B, Benson MK, Kumar EP, Sudha S, Wilking JE. Evaluation of Ashwagandha in alcohol withdrawal syndrome. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2012. [DOI: 10.1016/s2222-1808(12)60279-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Analgesic, anticonvulsant and antioxidant activities of 3-[4-(3-trifluoromethyl-phenyl)-piperazin-1-yl]-dihydrofuran-2-one dihydrochloride in mice. Pharmacol Biochem Behav 2011; 101:138-47. [PMID: 22227221 DOI: 10.1016/j.pbb.2011.12.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 12/18/2011] [Accepted: 12/19/2011] [Indexed: 11/21/2022]
Abstract
Recently we have shown that 3-[4-(3-trifluoromethyl-phenyl)-piperazin-1-yl]-dihydrofuran-2-one dihydrochloride (LPP1) is an antinociceptive and local anesthetic agent in rodents. Below an extended study of the pharmacological activity of LPP1 is described. In vitro LPP1 has no affinity for GABA(A), opioidergic μ and serotonergic 5-HT(1A) receptors. The total antioxidant capacity of LPP1 (1-10mM) measured as ABTS radical cation-scavenging activity showed that LPP1 has dose-dependent antioxidant properties in vitro. Low plasma concentration of this compound detected by means of HPLC method 30min after its intraperitoneal administration suggests a rapid conversion to metabolite(s) which may be responsible for its analgesic and anticonvulsant activities in vivo. In vivo the compound's influence on the electroconvulsive threshold and its activity in the maximal electroshock seizure test (MES) were evaluated. The results demonstrated that LPP1 had an anticonvulsant activity in the MES model (ED(50)=112mg/kg) and at a dose of 50mg/kg was able to elevate the electroconvulsive threshold for 8mA as compared to the vehicle-treated mice. The analgesic activity of LPP1 was investigated in the acetic acid-induced writhing test in two groups of mice: animals with sensory C-fibers ablated, and mice with C-fibers unimpaired. It proved the potent activity of this compound in both groups (approximately 85% as compared to the vehicle-treated mice). The adverse effects of LPP1 were evaluated as acute toxicity (LD(50)=747.8mg/kg) and motor coordination impairments in the rotarod and chimney tests. The results from these tests show that LPP1 at doses higher than 100mg/kg is likely to impair the motor performance of experimental animals. Concluding, LPP1 is an analgesic and anticonvulsant compound which has antioxidant properties in vitro. Further studies are necessary to assess whether the antioxidant activity and the receptor profiling demonstrated in vitro can be confirmed for its metabolite(s) that are formed in vivo.
Collapse
|