1
|
Buzoianu AD, Sharma A, Muresanu DF, Feng L, Huang H, Chen L, Tian ZR, Nozari A, Lafuente JV, Wiklund L, Sharma HS. Nanodelivery of Histamine H3/H4 Receptor Modulators BF-2649 and Clobenpropit with Antibodies to Amyloid Beta Peptide in Combination with Alpha Synuclein Reduces Brain Pathology in Parkinson's Disease. ADVANCES IN NEUROBIOLOGY 2023; 32:55-96. [PMID: 37480459 DOI: 10.1007/978-3-031-32997-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Parkinson's disease (PD) in military personnel engaged in combat operations is likely to develop in their later lives. In order to enhance the quality of lives of PD patients, exploration of novel therapy based on new research strategies is highly warranted. The hallmarks of PD include increased alpha synuclein (ASNC) and phosphorylated tau (p-tau) in the cerebrospinal fluid (CSF) leading to brain pathology. In addition, there are evidences showing increased histaminergic nerve fibers in substantia niagra pars compacta (SNpc), striatum (STr), and caudate putamen (CP) associated with upregulation of histamine H3 receptors and downregulation of H4 receptors in human brain. Previous studies from our group showed that modulation of potent histaminergic H3 receptor inverse agonist BF-2549 or clobenpropit (CLBPT) partial histamine H4 agonist with H3 receptor antagonist induces neuroprotection in PD brain pathology. Recent studies show that PD also enhances amyloid beta peptide (AβP) depositions in brain. Keeping these views in consideration in this review, nanowired delivery of monoclonal antibodies to AβP together with ASNC and H3/H4 modulator drugs on PD brain pathology is discussed based on our own observations. Our investigation shows that TiO2 nanowired BF-2649 (1 mg/kg, i.p.) or CLBPT (1 mg/kg, i.p.) once daily for 1 week together with nanowired delivery of monoclonal antibodies (mAb) to AβP and ASNC induced superior neuroprotection in PD-induced brain pathology. These observations are the first to show the modulation of histaminergic receptors together with antibodies to AβP and ASNC induces superior neuroprotection in PD. These observations open new avenues for the development of novel drug therapies for clinical strategies in PD.
Collapse
Affiliation(s)
- Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan, Hebei Province, China
| | - Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, China
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Wang Z, Zhao X, Wang S, Huang A, Wang Y, He J, Ling F, Zhong W. Iridium/ f-diaphos catalyzed asymmetric hydrogenation of 2-imidazolyl aryl/alkyl ketones. Org Biomol Chem 2021; 19:9746-9751. [PMID: 34730165 DOI: 10.1039/d1ob01860d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The iridium/f-diaphos L1, L5 or L12 catalyzed asymmetric hydrogenation of 2-imidazolyl aryl/alkyl ketones to afford two enantiomers of the desired chiral alcohols with high conversions (up to 99% yield) and moderate to excellent enantioselectivities (61% - >99% ee) was realized for the first time. This protocol could be easily conducted on a gram-scale with a TON of 9700.
Collapse
Affiliation(s)
- Ze Wang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Xianghua Zhao
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Shiliang Wang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - An Huang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Yifan Wang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Jiaying He
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Fei Ling
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Weihui Zhong
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| |
Collapse
|
3
|
Shah RR, Stonier PD. Repurposing old drugs in oncology: Opportunities with clinical and regulatory challenges ahead. J Clin Pharm Ther 2018; 44:6-22. [PMID: 30218625 DOI: 10.1111/jcpt.12759] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/08/2018] [Accepted: 08/19/2018] [Indexed: 12/11/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE In order to expedite the availability of drugs to treat cancers in a cost-effective manner, repurposing of old drugs for oncological indications is gathering momentum. Revolutionary advances in pharmacology and genomics have demonstrated many old drugs to have activity at novel antioncogenic pharmacological targets. We decided to investigate whether prospective studies support the promises of nonclinical and retrospective clinical studies on repurposing three old drugs, namely metformin, valproate and astemizole. METHODS We conducted an extensive literature search through PubMed to gather representative nonclinical and retrospective clinical studies that investigated the potential repurposing of these three drugs for oncological indications. We then searched for prospective studies aimed at confirming the promises of retrospective data. RESULTS AND DISCUSSION While evidence from nonclinical and retrospective clinical studies with these drugs appears highly promising, large scale prospective studies are either lacking or have failed to substantiate this promise. We provide a brief discussion of some of the challenges in repurposing. Principal challenges and obstacles relate to heterogeneity of cancers studied without considering their molecular signatures, trials with small sample size and short duration, failure consider issues of ethnicity of study population and effective antioncogenic doses of the drug studied. WHAT IS NEW AND CONCLUSION Well-designed prospective studies demonstrating efficacy are required for repurposing old drugs for oncology indications, just as they are for new chemical entities for any indication. Early and ongoing interactions with regulatory authorities are invaluable. We outline a tentative framework for a structured approach to repurposing old drugs for novel indications in oncology.
Collapse
Affiliation(s)
- Rashmi R Shah
- Pharmaceutical Consultant, Gerrards Cross, Buckinghamshire, UK
| | - Peter D Stonier
- Department of Pharmaceutical Medicine, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College, London, UK
| |
Collapse
|
4
|
Naporra F, Gobleder S, Wittmann HJ, Spindler J, Bodensteiner M, Bernhardt G, Hübner H, Gmeiner P, Elz S, Strasser A. Dibenzo[b,f][1,4]oxazepines and dibenzo[b,e]oxepines: Influence of the chlorine substitution pattern on the pharmacology at the H 1R, H 4R, 5-HT 2AR and other selected GPCRs. Pharmacol Res 2016; 113:610-625. [PMID: 27697645 DOI: 10.1016/j.phrs.2016.09.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 11/19/2022]
Abstract
Inspired by VUF6884 (7-Chloro-11-(4-methylpiperazin-1-yl)dibenzo[b,f][1,4]oxazepine), reported as a dual H1/H4 receptor ligand (pKi: 8.11 (human H1R (hH1R)), 7.55 (human H4R (hH4R))), four known and 28 new oxazepine and related oxepine derivatives were synthesised and pharmacologically characterized at histamine receptors and selected aminergic GPCRs. In contrast to the oxazepine series, within the oxepine series, the new compounds showed high affinity to the hH1R (pKi: 6.8-8.7), but no or moderate affinity to the hH4R (pKi:≤5.3). For one oxepine derivative (1-(2-Chloro-6,11-dihydrodibenzo[b,e]oxepin-11-yl)-4-methylpiperazine), the enantiomers were separated and the R-enantiomer was identified as the eutomer at the hH1R (pKi: 8.83 (R), 7.63 (S)) and the guinea-pig H1R (gpH1R) (pKi: 8.82 (R), 7.41 (S)). Molecular dynamic studies suggest that the tricyclic core of the compounds is bound in a similar mode into the binding pocket, as described for doxepine in the hH1R crystal structure. Moreover, docking studies of all oxepine derivatives at the hH1R indicate that the oxygen and the position of the chlorine in the tricyclic core determines, if the R- or the S-enantiomer is the eutomer. For some of the oxazepines and oxepines the affinity to other aminergic GPCRs is in the same range as to hH1R or hH4R, thus, those compounds have to be classified as dirty drugs. However, one oxazepine derivative (3,7-Dichloro-11-(4-methylpiperazin-1-yl)dibenzo[b,f][1,4]oxazepine was identified as dual hH1/h5-HT2A receptor ligand (pKi: 9.23 (hH1R), 8.74 (h5-HT2AR), ≤7 at other analysed GPCRs), whereas one oxepine derivative (1-(3,8-Dichloro-6,11-dihydrodibenzo[b,e]oxepin-11-yl)-4-methylpiperazine) was identified as selective hH1R antagonist (pKi: 8.44 (hH1R), ≤6.7 at other analyzed GPCRs). Thus, the pharmacological results suggest that the oxazepine/oxepine moiety and additionally the chlorine substitution pattern toggles receptor selectivity and specificity.
Collapse
Affiliation(s)
- Franziska Naporra
- Department of Pharmaceutical/Medicinal Chemistry I, Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
| | - Susanne Gobleder
- Department of Pharmaceutical/Medicinal Chemistry I, Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
| | - Hans-Joachim Wittmann
- Department of Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
| | - Julia Spindler
- Department of Pharmaceutical/Medicinal Chemistry I, Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
| | - Michael Bodensteiner
- Institute of Inorganic Chemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Günther Bernhardt
- Department of Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
| | - Sigurd Elz
- Department of Pharmaceutical/Medicinal Chemistry I, Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
| | - Andrea Strasser
- Department of Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany.
| |
Collapse
|
5
|
Hammer SG, Gobleder S, Naporra F, Wittmann HJ, Elz S, Heinrich MR, Strasser A. 2,4-Diaminopyrimidines as dual ligands at the histamine H1 and H4 receptor-H1/H4-receptor selectivity. Bioorg Med Chem Lett 2015; 26:292-300. [PMID: 26718844 DOI: 10.1016/j.bmcl.2015.12.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/10/2015] [Accepted: 12/10/2015] [Indexed: 11/20/2022]
Abstract
Distinct diaminopyrimidines, for example, 4-(4-methylpiperazin-1-yl)-5,6-dihydrobenzo[h]quinazolin-2-amine are histamine H4 receptor (H4R) antagonists and show high affinity to the H4R, but only a moderate affinity to the histamine H1 receptor (H1R). Within previous studies it was shown that an aromatic side chain with a distinct distance to the basic amine and aromatic core is necessary for affinity to the human H1R (hH1R). Thus, a rigid aminopyrimidine with a tricyclic core was used as a lead structure. There, (1) the flexible aromatic side chain was introduced, (2) the substitution pattern of the pyrimidine core was exchanged and (3) rigidity was decreased by opening the tricyclic core. Within the present study, two compounds with similar affinity in the one digit μM range to the human H1R and H4R were identified. While the affinity at the hH1R increased about 4- to 8-fold compared to the parent diaminopyrimidine, the affinity to the hH4R decreased about 5- to 8-fold. In addition to the parent diaminopyrimidine, two selected compounds were docked into the H1R and H4R and molecular dynamic studies were performed to predict the binding mode and explain the experimental results on a molecular level. The two new compounds may be good lead structures for the development of dual H1/H4 receptor ligands with affinities in the same range.
Collapse
Affiliation(s)
- Sebastian G Hammer
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schuhstraße 19, D-91052 Erlangen, Germany
| | - Susanne Gobleder
- Department of Pharmaceutical/Medicinal Chemistry I, Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
| | - Franziska Naporra
- Department of Pharmaceutical/Medicinal Chemistry I, Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
| | - Hans-Joachim Wittmann
- Department of Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
| | - Sigurd Elz
- Department of Pharmaceutical/Medicinal Chemistry I, Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
| | - Markus R Heinrich
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schuhstraße 19, D-91052 Erlangen, Germany.
| | - Andrea Strasser
- Department of Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany.
| |
Collapse
|
6
|
Kiss R, Keseru GM. Novel histamine H4receptor ligands and their potential therapeutic applications: an update. Expert Opin Ther Pat 2014; 24:1185-97. [DOI: 10.1517/13543776.2014.959494] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Seifert R. Therapeutic efficacy of a H₄ receptor antagonist in humans: a milestone in histamine research. J Pharmacol Exp Ther 2014; 350:2-4. [PMID: 24925898 DOI: 10.1124/jpet.114.215749comm] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Affiliation(s)
- Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
8
|
Wittmann HJ, Seifert R, Strasser A. Mathematical analysis of the sodium sensitivity of the human histamine H3 receptor. In Silico Pharmacol 2014; 2:1. [PMID: 27502620 PMCID: PMC4644138 DOI: 10.1186/s40203-014-0001-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/28/2014] [Indexed: 11/22/2022] Open
Abstract
Purpose It was shown by several experimental studies that some G protein coupled receptors (GPCR) are sensitive to sodium ions. Furthermore, mutagenesis studies or the determination of crystal structures of the adenosine A2A or δ-opioid receptor revealed an allosteric Na+ binding pocket near to the highly conserved Asp2.50. Within a previous study, the influence of NaCl concentration onto the steady-state GTPase activity at the human histamine H3 receptor (hH3R) in presence of the endogenous histamine or the inverse agonist thioperamide was analyzed. The purpose of the present study was to examine and quantify the Na+-sensitivity of hH3R on a molecular level. Methods To achieve this, we developed a set of equations, describing constitutive activity and the different ligand-receptor equilibria in absence or presence of sodium ions. Furthermore, in order to gain a better understanding of the ligand- and Na+-binding to hH3R on molecular level, we performed molecular dynamic (MD) simulations. Results The analysis of the previously determined experimental steady-state GTPase data with the set of equations presented within this study, reveals that thioperamide binds into the orthosteric binding pocket of the hH3R in absence or presence of a Na+ in its allosteric binding site. However, the data suggest that thioperamide binds preferentially into the hH3R in absence of a sodium ion in its allosteric site. These experimental results were supported by MD simulations of thioperamide in the binding pocket of the inactive hH3R. Furthermore, the MD simulations revealed two different binding modes for thioperamide in presence or absence of a Na+ in its allosteric site. Conclusion The mathematical model presented within this study describes the experimental data regarding the Na+-sensitivity of hH3R in an excellent manner. Although the present study is focused onto the Na+-sensitivity of the hH3R, the resulting equations, describing Na+- and ligand-binding to a GPCR, can be used for all other ion-sensitive GPCRs.
Collapse
Affiliation(s)
- Hans-Joachim Wittmann
- Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg, 93040, Germany
| | - Roland Seifert
- Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Straße 1, Hannover, 30625, Germany
| | - Andrea Strasser
- Department of Pharmaceutical and Medicinal Chemistry II, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg, 93040, Germany.
| |
Collapse
|