5
|
Wells MA, See Hoe LE, Molenaar P, Pedersen S, Obonyo NG, McDonald CI, Mo W, Bouquet M, Hyslop K, Passmore MR, Bartnikowski N, Suen JY, Peart JN, McGiffin DC, Fraser JF. Compromised right ventricular contractility in an ovine model of heart transplantation following 24 h donor brain stem death. Pharmacol Res 2021; 169:105631. [PMID: 33905863 DOI: 10.1016/j.phrs.2021.105631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/19/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Heart failure is an inexorably progressive disease with a high mortality, for which heart transplantation (HTx) remains the gold standard treatment. Currently, donor hearts are primarily derived from patients following brain stem death (BSD). BSD causes activation of the sympathetic nervous system, increases endothelin levels, and triggers significant inflammation that together with potential myocardial injury associated with the transplant procedure, may affect contractility of the donor heart. We examined peri-transplant myocardial catecholamine sensitivity and cardiac contractility post-BSD and transplantation in a clinically relevant ovine model. METHODS Donor sheep underwent BSD (BSD, n = 5) or sham (no BSD) procedures (SHAM, n = 4) and were monitored for 24h prior to heart procurement. Orthotopic HTx was performed on a separate group of donor animals following 24h of BSD (BSD-Tx, n = 6) or SHAM injury (SH-Tx, n = 5). The healthy recipient heart was used as a control (HC, n = 11). A cumulative concentration-effect curve to (-)-noradrenaline (NA) was established using left (LV) and right ventricular (RV) trabeculae to determine β1-adrenoceptor mediated potency (-logEC50 [(-)-noradrenaline] M) and maximal contractility (Emax). RESULTS Our data showed reduced basal and maximal (-)-noradrenaline induced contractility of the RV (but not LV) following BSD as well as HTx, regardless of whether the donor heart was exposed to BSD or SHAM. The potency of (-)-noradrenaline was lower in left and right ventricles for BSD-Tx and SH-Tx compared to HC. CONCLUSION These studies show that the combination of BSD and transplantation are likely to impair contractility of the donor heart, particularly for the RV. For the donor heart, this contractile dysfunction appears to be independent of changes to β1-adrenoceptor sensitivity. However, altered β1-adrenoceptor signalling is likely to be involved in post-HTx contractile dysfunction.
Collapse
Affiliation(s)
- Matthew A Wells
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; School of Medical Sciences, Griffith University, Queensland, Australia
| | - Louise E See Hoe
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Australia.
| | - Peter Molenaar
- Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Australia; Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Australia
| | - Sanne Pedersen
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia
| | - Nchafatso G Obonyo
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Wellcome Trust Centre for Global Health Research, Imperial College London, United Kingdom; Initiative to Develop African Research Leaders (IDeAL), Kilifi, Kenya
| | - Charles I McDonald
- The Department of Anaesthesia and Perfusion, The Prince Charles Hospital, Queensland, Australia
| | - Weilan Mo
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Australia
| | - Mahè Bouquet
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Australia
| | - Kieran Hyslop
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Australia
| | - Margaret R Passmore
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Australia
| | - Nicole Bartnikowski
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Faculty of Science and Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Australia
| | - Jacky Y Suen
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Australia
| | - Jason N Peart
- School of Medical Sciences, Griffith University, Queensland, Australia
| | - David C McGiffin
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Cardiothoracic Surgery and Transplantation, The Alfred Hospital, and Monash University, Melbourne, Australia
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Australia
| | -
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; School of Medical Sciences, Griffith University, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Australia; Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Australia; Cardiothoracic Surgery and Transplantation, The Alfred Hospital, and Monash University, Melbourne, Australia
| |
Collapse
|
6
|
Iqbal Z, Ismaili D, Dolce B, Petersen J, Reichenspurner H, Hansen A, Kirchhof P, Eschenhagen T, Nikolaev VO, Molina CE, Christ T. Regulation of basal and norepinephrine-induced cAMP and I Ca in hiPSC-cardiomyocytes: Effects of culture conditions and comparison to adult human atrial cardiomyocytes. Cell Signal 2021; 82:109970. [PMID: 33677066 DOI: 10.1016/j.cellsig.2021.109970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 01/27/2023]
Abstract
BACKGROUND There is ongoing interest in generating cardiomyocytes derived from human induced pluripotent stem cells (hiPSC) to study human cardiac physiology and pathophysiology. Recently we found that norepinephrine-stimulated calcium currents (ICa) in hiPSC-cardiomyocytes were smaller in conventional monolayers (ML) than in engineered heart tissue (EHT). In order to elucidate culture specific regulation of β1-adrenoceptor (β1-AR) responses we investigated whether action of phosphodiesterases (PDEs) may limit norepinephrine effects on ICa and on cytosolic cAMP in hiPSC-cardiomyocytes. Results were compared to adult human atrial cardiomyocytes. METHODS Adult human atrial cardiomyocytes were isolated from tissue samples obtained during open heart surgery. All patients were in sinus rhythm. HiPSC-cardiomyocytes were dissociated from ML and EHT. Förster-resonance energy transfer (FRET) was used to monitor cytosolic cAMP (Epac1-camps sensor, transfected by adenovirus). ICa was recorded by whole-cell patch clamp technique. Cilostamide (300 nM) and rolipram (10 μM) were used to inhibit PDE3 and PDE4, respectively. β1-AR were stimulated with the physiological agonist norepinephrine (100 μM). RESULTS In adult human atrial cardiomyocytes, norepinephrine increased cytosolic cAMP FRET ratio by +13.7 ± 1.5% (n = 10/9, mean ± SEM, number of cells/number patients) and ICa by +10.4 ± 1.5 pA/pF (n = 15/10). This effect was not further increased in the concomitant presence of rolipram, cilostamide and norepinephrine, indicating saturation by norepinephrine alone. In ML hiPSC-cardiomyocytes, norepinephrine exerted smaller increases in cytosolic cAMP and ICa (FRET +9.6 ± 0.5% n = 52/21, number of cells/number of ML or EHT, and ICa + 1.4 ± 0.2 pA/pF n = 34/7, p < 0.05 each) and both were augmented in the presence of the PDE4 inhibitor rolipram (FRET +16.7 ± 0.8% n = 94/26 and ICa + 5.6 ± 1.4 pA/pF n = 11/5, p < 0.05 each). Cilostamide increased the response to norepinephrine on FRET (+12.7 ± 0.5% n = 91/19, p < 0.05), but not on ICa. In EHT hiPSC-cardiomyocytes, norepinephrine responses on both, FRET and ICa, were larger than in ML (FRET +12.1 ± 0.3% n = 87/32 and ICa + 3.3 ± 0.2 pA/pF n = 13/5, p < 0.05 each). Rolipram augmented the norepinephrine effect on ICa (+6.2 ± 1.6 pA/pF; p < 0.05 vs. norepinephrine alone, n = 10/4), but not on FRET. CONCLUSION Our results show culture-dependent differences in hiPSC-cardiomyocytes. In conventional ML but not in EHT, maximum norepinephrine effects on cytosolic cAMP depend on PDE3 and PDE4, suggesting immaturity when compared to the situation in adult human atrial cardiomyocytes. The smaller ICa responses to norepinephrine in ML and EHT vs. adult human atrial cardiomyocytes depend at least partially on a non-physiological large impact of PDE4 in hiPSC-cardiomyocytes.
Collapse
Affiliation(s)
- Zafar Iqbal
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Djemail Ismaili
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| | - Bernardo Dolce
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Johannes Petersen
- Department of Cardiovascular Surgery, University Heart and Vascular Center, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Hermann Reichenspurner
- Department of Cardiovascular Surgery, University Heart and Vascular Center, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Arne Hansen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Paulus Kirchhof
- Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany; Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, UK; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Cristina E Molina
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Torsten Christ
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| |
Collapse
|
7
|
Karam S, Margaria JP, Bourcier A, Mika D, Varin A, Bedioune I, Lindner M, Bouadjel K, Dessillons M, Gaudin F, Lefebvre F, Mateo P, Lechène P, Gomez S, Domergue V, Robert P, Coquard C, Algalarrondo V, Samuel JL, Michel JB, Charpentier F, Ghigo A, Hirsch E, Fischmeister R, Leroy J, Vandecasteele G. Cardiac Overexpression of PDE4B Blunts β-Adrenergic Response and Maladaptive Remodeling in Heart Failure. Circulation 2020; 142:161-174. [PMID: 32264695 DOI: 10.1161/circulationaha.119.042573] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The cyclic AMP (adenosine monophosphate; cAMP)-hydrolyzing protein PDE4B (phosphodiesterase 4B) is a key negative regulator of cardiac β-adrenergic receptor stimulation. PDE4B deficiency leads to abnormal Ca2+ handling and PDE4B is decreased in pressure overload hypertrophy, suggesting that increasing PDE4B in the heart is beneficial in heart failure. METHODS We measured PDE4B expression in human cardiac tissues and developed 2 transgenic mouse lines with cardiomyocyte-specific overexpression of PDE4B and an adeno-associated virus serotype 9 encoding PDE4B. Myocardial structure and function were evaluated by echocardiography, ECG, and in Langendorff-perfused hearts. Also, cAMP and PKA (cAMP dependent protein kinase) activity were monitored by Förster resonance energy transfer, L-type Ca2+ current by whole-cell patch-clamp, and cardiomyocyte shortening and Ca2+ transients with an Ionoptix system. Heart failure was induced by 2 weeks infusion of isoproterenol or transverse aortic constriction. Cardiac remodeling was evaluated by serial echocardiography, morphometric analysis, and histology. RESULTS PDE4B protein was decreased in human failing hearts. The first PDE4B-transgenic mouse line (TG15) had a ≈15-fold increase in cardiac cAMP-PDE activity and a ≈30% decrease in cAMP content and fractional shortening associated with a mild cardiac hypertrophy that resorbed with age. Basal ex vivo myocardial function was unchanged, but β-adrenergic receptor stimulation of cardiac inotropy, cAMP, PKA, L-type Ca2+ current, Ca2+ transients, and cell contraction were blunted. Endurance capacity and life expectancy were normal. Moreover, these mice were protected from systolic dysfunction, hypertrophy, lung congestion, and fibrosis induced by chronic isoproterenol treatment. In the second PDE4B-transgenic mouse line (TG50), markedly higher PDE4B overexpression, resulting in a ≈50-fold increase in cardiac cAMP-PDE activity caused a ≈50% decrease in fractional shortening, hypertrophy, dilatation, and premature death. In contrast, mice injected with adeno-associated virus serotype 9 encoding PDE4B (1012 viral particles/mouse) had a ≈50% increase in cardiac cAMP-PDE activity, which did not modify basal cardiac function but efficiently prevented systolic dysfunction, apoptosis, and fibrosis, while attenuating hypertrophy induced by chronic isoproterenol infusion. Similarly, adeno-associated virus serotype 9 encoding PDE4B slowed contractile deterioration, attenuated hypertrophy and lung congestion, and prevented apoptosis and fibrotic remodeling in transverse aortic constriction. CONCLUSIONS Our results indicate that a moderate increase in PDE4B is cardioprotective and suggest that cardiac gene therapy with PDE4B might constitute a new promising approach to treat heart failure.
Collapse
Affiliation(s)
- Sarah Karam
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | | | - Aurélia Bourcier
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Delphine Mika
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Audrey Varin
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Ibrahim Bedioune
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Marta Lindner
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Kaouter Bouadjel
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Matthieu Dessillons
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Françoise Gaudin
- Université Paris-Saclay, Inserm, UMS-IPSIT, 92296 Châtenay-Malabry, France (F.G., V.D., P.R.)
| | - Florence Lefebvre
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Philippe Mateo
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Patrick Lechène
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Susana Gomez
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Valérie Domergue
- Université Paris-Saclay, Inserm, UMS-IPSIT, 92296 Châtenay-Malabry, France (F.G., V.D., P.R.)
| | - Pauline Robert
- Université Paris-Saclay, Inserm, UMS-IPSIT, 92296 Châtenay-Malabry, France (F.G., V.D., P.R.)
| | - Charlène Coquard
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Vincent Algalarrondo
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Jane-Lise Samuel
- UMR-S 942, Inserm, Paris University, 75010 Paris, France (J.-L.S.)
| | - Jean-Baptiste Michel
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University di Torino, 10126 Torino, Italy (J.P.M., A.G., E.H.).,UMR-S 1148, INSERM, Paris University, X. Bichat hospital, 75018 Paris, France (J.-B.M.)
| | - Flavien Charpentier
- Institut du thorax, Inserm, CNRS, Univ. Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France (F.C.)
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University di Torino, 10126 Torino, Italy (J.P.M., A.G., E.H.)
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University di Torino, 10126 Torino, Italy (J.P.M., A.G., E.H.)
| | - Rodolphe Fischmeister
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Jérôme Leroy
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Grégoire Vandecasteele
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| |
Collapse
|