1
|
Dwaib H, Michel MC. Adrenoceptor Expression and Function in the Endocrine Pancreas. Handb Exp Pharmacol 2024; 285:639-664. [PMID: 38872059 DOI: 10.1007/164_2024_717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The sympathetic nervous system plays an important role in the regulation of endocrine pancreatic function, most importantly insulin release. Among the nine adrenoceptor (AR) subtypes, the α2A-AR appears to be the subtype most abundantly expressed in the human pancreas. While α2- and β-AR have opposing effects, the net response to sympathetic stimulation is inhibition of insulin secretion mediated by α2-AR located in the plasma membrane of pancreatic β cells. This inhibition may be present physiologically as evidenced by increased insulin secretion in healthy and diabetic humans and animals in response to α2-AR antagonists, a finding that was confirmed in all studies. Based on such data and on an association of an α2A-AR polymorphism, that increases receptor expression levels, with an elevated risk for diabetes, increased α2A-AR signaling in the pancreatic β cells has been proposed as a risk factor for the development of type 2 diabetes. Thus, the α2A-AR was proposed as a drug target for the treatment of some forms of type 2 diabetes. Drug research and development programs leveraging this mechanism have reached the clinical stage, but none have resulted in an approved medicine due to a limited efficacy. While β-AR agonists can increase circulating insulin levels in vivo, it remains controversial whether this includes a direct effect on β cells or occurs secondary to general metabolic effects. Therefore, the regulation of endocrine pancreatic function is physiologically interesting but may be of limited therapeutic relevance.
Collapse
Affiliation(s)
- Haneen Dwaib
- Department of Clinical Nutrition and Dietetics, Palestine Ahliya University, Bethlehem, Palestine.
| | - Martin C Michel
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
2
|
β-Adrenoreceptors as Therapeutic Targets for Ocular Tumors and Other Eye Diseases-Historical Aspects and Nowadays Understanding. Int J Mol Sci 2023; 24:ijms24054698. [PMID: 36902129 PMCID: PMC10003534 DOI: 10.3390/ijms24054698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
β-adrenoreceptors (ARs) are members of the superfamily of G-protein-coupled receptors (GPCRs), and are activated by catecholamines, such as epinephrine and norepinephrine. Three subtypes of β-ARs (β1, β2, and β3) have been identified with different distributions among ocular tissues. Importantly, β-ARs are an established target in the treatment of glaucoma. Moreover, β-adrenergic signaling has been associated with the development and progression of various tumor types. Hence, β-ARs are a potential therapeutic target for ocular neoplasms, such as ocular hemangioma and uveal melanoma. This review aims to discuss the expression and function of individual β-AR subtypes in ocular structures, as well as their role in the treatment of ocular diseases, including ocular tumors.
Collapse
|
3
|
Saunders SL, Hutchinson DS, Britton FC, Liu L, Markus I, Sandow SL, Murphy TV. Effect of β 1 /β 2 -adrenoceptor blockade on β 3 -adrenoceptor activity in the rat cremaster muscle artery. Br J Pharmacol 2021; 178:1789-1804. [PMID: 33506492 DOI: 10.1111/bph.15398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The physiological role of vascular β3 -adrenoceptors is not fully understood. Recent evidence suggests cardiac β3 -adrenoceptors are functionally effective after down-regulation of β1 /β2 -adrenoceptors. The functional interaction between the β3 -adrenoceptor and other β-adrenoceptor subtypes in rat striated muscle arteries was investigated. EXPERIMENTAL APPROACH Studies were performed in cremaster muscle arteries isolated from male Sprague-Dawley rats. β-adrenoceptor expression was assessed through RT-PCR and immunofluorescence. Functional effects of β3 -adrenoceptor agonists and antagonists and other β-adrenoceptor ligands were measured using pressure myography. KEY RESULTS All three β-adrenoceptor subtypes were present in the endothelium of the cremaster muscle artery. The β3 -adrenoceptor agonists mirabegron and CL 316,243 had no effect on the diameter of pressurized (70 mmHg) cremaster muscle arterioles with myogenic tone, while the β3 -adrenoceptor agonist SR 58611A and the nonselective β-adrenoceptor agonist isoprenaline caused concentration-dependent dilation. In the presence of β1/2 -adrenoceptor antagonists nadolol (10 μM), atenolol (1 μM) and ICI 118,551 (0.1 μM) both mirabegron and CL 316,243 were effective in causing vasodilation and the potency of SR 58611A was enhanced, while responses to isoprenaline were inhibited. The β3 -adrenoceptor antagonist L 748,337 (1 μM) inhibited vasodilation caused by β3 -adrenoceptor agonists (in the presence of β1/2 -adrenoceptor blockade), but L 748,337 had no effect on isoprenaline-induced vasodilation. CONCLUSION AND IMPLICATIONS All three β-adrenoceptor subtypes were present in the endothelium of the rat cremaster muscle artery, but β3 -adrenoceptor mediated vasodilation was only evident after blockade of β1/2 -adrenoceptors. This suggests constitutive β1/2 -adrenoceptor activity inhibits β3 -adrenoceptor function in the endothelium of skeletal muscle resistance arteries.
Collapse
Affiliation(s)
- Samantha L Saunders
- Physiology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Dana S Hutchinson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Fiona C Britton
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Lu Liu
- Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Irit Markus
- Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Shaun L Sandow
- Physiology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia.,Biomedical Science, School of Health and Sports Science, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Timothy V Murphy
- Physiology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Simpson PC, Myagmar BE, Swigart PM, Melov S, Baker AJ. Response by Simpson et al to Letter Regarding Article, "Adrenergic Receptors in Individual Ventricular Myocytes: the Beta-1 and Alpha-1B Are in All Cells, the Alpha-1A Is in a Subpopulation, and the Beta-2 and Beta-3 Are Mostly Absent". Circ Res 2019; 120:e56-e57. [PMID: 28596177 DOI: 10.1161/circresaha.117.311146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Paul C Simpson
- VA Medical Center, University of California, San Francisco
| | | | | | - Simon Melov
- Buck Institute for Research on Aging, Novato, CA
| | | |
Collapse
|
5
|
Igawa Y, Aizawa N, Michel MC. β 3 -Adrenoceptors in the normal and diseased urinary bladder-What are the open questions? Br J Pharmacol 2019; 176:2525-2538. [PMID: 30868554 DOI: 10.1111/bph.14658] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/31/2018] [Accepted: 01/29/2019] [Indexed: 12/13/2022] Open
Abstract
β3 -Adrenoceptor agonists are used in the treatment of overactive bladder syndrome. Although the relaxant response to adrenergic stimulation in human detrusor smooth muscle cells is mediated mainly via β3 -adrenoceptors, the plasma concentrations of the therapeutic dose of mirabegron, the only clinically approved β3 -adrenoceptor agonist, are considerably lower than the EC50 for causing direct relaxation of human detrusor, suggesting a mechanism of action other than direct relaxation of detrusor smooth muscle. However, the site and mechanism of action of β3 -adrenoceptor agonists in the bladder have not been firmly established. Postulated mechanisms include prejunctional suppression of ACh release from the parasympathetic nerves during the storage phase and inhibition of micro-contractions through β3 -adrenoceptors on detrusor smooth muscle cells or suburothelial interstitial cells. Implications of possible desensitization of β3 -adrenoceptors in the bladder upon prolonged agonist exposure and possible causes of rarely observed cardiovascular effects of mirabegron are also discussed. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
- Yasuhiko Igawa
- Department of Continence Medicine, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Naoki Aizawa
- Department of Continence Medicine, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
6
|
Ocampo-Néstor AL, López-Mayorga RM, Castillo-Henkel EF, Padilla-Martínez II, Trujillo-Ferrara JG, Soriano-Ursúa MA. Design, synthesis and in vitro evaluation of a Dopa-organoboron compound that acts as a bladder relaxant through non-catecholamine receptors. Mol Divers 2019; 23:361-370. [PMID: 30284107 DOI: 10.1007/s11030-018-9883-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023]
Abstract
Bladder relaxation through drug administration is an interesting topic in medicinal and combinatorial chemistry. In fact, compounds targeting catecholamine receptors [dopamine receptors and beta-adrenergic receptors (βAR) expressed in the bladder] are among the compounds commonly employed for this purpose. In particular, recent investigations have tended to focus on the β3-adrenoceptor (β3AR) as a target in the treatment of urinary incontinence and other disorders. However, organoboron compounds have been suggested as potent and efficient agents on these drug targets. In this work, through a docking study, we identified the parameters that induce a theoretical improvement in the affinity and activity of the organoboron compounds on the catecholamine receptors expressed in the bladder. Then, the identified potential drug, a boron-containing dopa-derivative named DPBX-L-Dopa, was synthesized and characterized. This compound induces a relaxation on the smooth muscle of the rat bladder, behaving as a weak relaxant compared to isoproterenol but with similar efficacy to BRL377, a selective β3AR agonist. However, unexpectedly, this effect was not blocked by propranolol or haloperidol at the concentrations at which they are able to block the catecholamine receptors in bladder tissue. In view of these results, the effect of DPBX-L-Dopa compound on the alpha 1 adrenergic receptors (α1AR) of aorta of the rats was also explored; however, no response of the tissue to this compound was obtained. The possible mechanisms of the action of this compound were explored and are discussed further.
Collapse
Affiliation(s)
- Ana L Ocampo-Néstor
- Departamento de Fisiología, Laboratorio de Investigación en Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, México, Mexico
| | - Ruth M López-Mayorga
- Departamento de Fisiología, Laboratorio de Investigación en Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, México, Mexico
| | - Enrique F Castillo-Henkel
- Departamento de Fisiología, Laboratorio de Investigación en Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, México, Mexico
| | - Itzia I Padilla-Martínez
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Avenida Acueducto s/n, Barrio La Laguna Ticomán, 07340, México, Mexico
| | - José G Trujillo-Ferrara
- Departamento de Fisiología, Laboratorio de Investigación en Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, México, Mexico.
| | - Marvin A Soriano-Ursúa
- Departamento de Fisiología, Laboratorio de Investigación en Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, México, Mexico.
| |
Collapse
|
7
|
Arioglu-Inan E, Kayki-Mutlu G, Michel MC. Cardiac β 3 -adrenoceptors-A role in human pathophysiology? Br J Pharmacol 2019; 176:2482-2495. [PMID: 30801686 DOI: 10.1111/bph.14635] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/11/2019] [Accepted: 01/29/2019] [Indexed: 01/06/2023] Open
Abstract
As β3 -adrenoceptors were first demonstrated to be expressed in adipose tissue they have received much attention for their metabolic effects in obesity and diabetes. After the existence of this subtype had been suggested to be present in the heart, studies focused on its role in cardiac function. While the presence and functional role of β3 -adrenoceptors in the heart has not uniformly been detected, there is a broad consensus that they become up-regulated in pathological conditions associated with increased sympathetic activity such as heart failure and diabetes. When detected, the β3 -adrenceptor has been demonstrated to mediate negative inotropic effects in an inhibitory G protein-dependent manner through the NO-cGMP-PKG signalling pathway. Whether these negative inotropic effects provide protection from the adverse effects induced by overstimulation of β1 /β2 -adrenoceptors or in themselves are potentially harmful is controversial, but ongoing clinical studies in patients with congestive heart failure are testing the hypothesis that β3 -adrenceptor agonism has a beneficial effect. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
- Ebru Arioglu-Inan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Gizem Kayki-Mutlu
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
8
|
Okeke K, Angers S, Bouvier M, Michel MC. Agonist-induced desensitisation of β 3 -adrenoceptors: Where, when, and how? Br J Pharmacol 2019; 176:2539-2558. [PMID: 30809805 DOI: 10.1111/bph.14633] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/27/2019] [Accepted: 02/11/2019] [Indexed: 12/13/2022] Open
Abstract
β3 -Adrenoceptor agonists have proven useful in the treatment of overactive bladder syndrome, but it is not known whether their efficacy during chronic administration may be limited by receptor-induced desensitisation. Whereas the β2 -adrenoceptor has phosphorylation sites that are important for desensitisation, the β3 -adrenoceptor lacks these; therefore, it had been assumed that β3 -adrenoceptors are largely resistant to agonist-induced desensitisation. While all direct comparative studies demonstrate that β3 -adrenoceptors are less susceptible to desensitisation than β2 -adrenoceptors, desensitisation of β3 -adrenoceptors has been observed in many models and treatment settings. Chimeric β2 - and β3 -adrenoceptors have demonstrated that the C-terminal tail of the receptor plays an important role in the relative resistance to desensitisation but is not the only relevant factor. While the evidence from some models, such as transfected CHO cells, is inconsistent, it appears that desensitisation is observed more often after long-term (hours to days) than short-term (minutes to hours) agonist exposure. When it occurs, desensitisation of β3 -adrenoceptors can involve multiple levels including down-regulation of its mRNA and the receptor protein and alterations in post-receptor signalling events. The relative contributions of these mechanistic factors apparently depend on the cell type under investigation. Which if any of these factors is applicable to the human urinary bladder remains to be determined. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
- Katerina Okeke
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | - Stephane Angers
- Leslie Dan Faculty of Pharmacy and Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada
| | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
9
|
Ocampo-Néstor AL, López-Mayorga RM, Castillo-Henkel EF, Padilla-Martínez II, Trujillo-Ferrara JG, Soriano-Ursúa MA. Design, synthesis and in vitro evaluation of a Dopa-organoboron compound that acts as a bladder relaxant through non-catecholamine receptors. Mol Divers 2018. [PMID: 30284107 DOI: 10.1007/s11030-018-9883-7.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
Bladder relaxation through drug administration is an interesting topic in medicinal and combinatorial chemistry. In fact, compounds targeting catecholamine receptors [dopamine receptors and beta-adrenergic receptors (βAR) expressed in the bladder] are among the compounds commonly employed for this purpose. In particular, recent investigations have tended to focus on the β3-adrenoceptor (β3AR) as a target in the treatment of urinary incontinence and other disorders. However, organoboron compounds have been suggested as potent and efficient agents on these drug targets. In this work, through a docking study, we identified the parameters that induce a theoretical improvement in the affinity and activity of the organoboron compounds on the catecholamine receptors expressed in the bladder. Then, the identified potential drug, a boron-containing dopa-derivative named DPBX-L-Dopa, was synthesized and characterized. This compound induces a relaxation on the smooth muscle of the rat bladder, behaving as a weak relaxant compared to isoproterenol but with similar efficacy to BRL377, a selective β3AR agonist. However, unexpectedly, this effect was not blocked by propranolol or haloperidol at the concentrations at which they are able to block the catecholamine receptors in bladder tissue. In view of these results, the effect of DPBX-L-Dopa compound on the alpha 1 adrenergic receptors (α1AR) of aorta of the rats was also explored; however, no response of the tissue to this compound was obtained. The possible mechanisms of the action of this compound were explored and are discussed further.
Collapse
Affiliation(s)
- Ana L Ocampo-Néstor
- Departamento de Fisiología, Laboratorio de Investigación en Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, México, Mexico
| | - Ruth M López-Mayorga
- Departamento de Fisiología, Laboratorio de Investigación en Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, México, Mexico
| | - Enrique F Castillo-Henkel
- Departamento de Fisiología, Laboratorio de Investigación en Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, México, Mexico
| | - Itzia I Padilla-Martínez
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Avenida Acueducto s/n, Barrio La Laguna Ticomán, 07340, México, Mexico
| | - José G Trujillo-Ferrara
- Departamento de Fisiología, Laboratorio de Investigación en Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, México, Mexico.
| | - Marvin A Soriano-Ursúa
- Departamento de Fisiología, Laboratorio de Investigación en Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, México, Mexico.
| |
Collapse
|
10
|
Sánchez M, Suárez L, Andrés MT, Flórez BH, Bordallo J, Riestra S, Cantabrana B. Modulatory effect of intestinal polyamines and trace amines on the spontaneous phasic contractions of the isolated ileum and colon rings of mice. Food Nutr Res 2017; 61:1321948. [PMID: 28659731 PMCID: PMC5475348 DOI: 10.1080/16546628.2017.1321948] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/20/2017] [Indexed: 11/08/2022] Open
Abstract
Background: Gastrointestinal motility modulatory factors include substances of the intestinal content, such as polyamines and trace amines (TAs), the focus of this study. Methods: The amines of food, intestinal content and from faecal bacteria of Swiss mice were determined by HPLC and functionally characterised in isolated distal ileum and medial colon rings. Results: Mouse food and intestinal content contain polyamines (spermidine>putrescine>spermine) and TAs (isoamylamine>cadaverine). Intestinal bacteria mainly produce putrescine and cadaverine. The amines inhibited the spontaneous motility of the ileum (0.1-3 mM) and colon rings (0.01-3 mM, with lower IC50), with: spermine~isoamylamine~spermidine. Spermine inhibition was tetrodotoxin (TTX)-insensitive, while isoamylamine was TTX-sensitive, suggesting neural control. Mainly in the ileum, isoamylamine (3 mM) elicited acute effects modified by TTX, atropine and propranolol, and suppressed by spermine (3 mM), not being localized at the smooth muscle level. The amines assayed (3 mM), except putrescine and cadaverine in the ileum and isoamylamine in the colon, antagonised acetylcholine (ACh, 0.1 mM)-elicited phasic contractions. Isoamylamine and spermine in colon relaxed KCl (100 mM)-elicited tonic contractions, suggesting an effect on smooth muscle, but did not justify the suppression of motility caused by spermine and isoamylamine. Conclusions: Polyamines and TAs of the intestinal content might act on chemosensors and modulate intestinal peristalsis.
Collapse
Affiliation(s)
- Manuel Sánchez
- Farmacología, Departamento de Medicina, Universidad de Oviedo, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
| | - Lorena Suárez
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
| | - María Teresa Andrés
- Laboratorio de Microbiología Oral, Escuela de Estomatología, Universidad de Oviedo, Oviedo, Spain
| | - Blanca Henar Flórez
- Farmacología, Departamento de Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Javier Bordallo
- Farmacología, Departamento de Medicina, Universidad de Oviedo, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
| | - Sabino Riestra
- Servicio de Aparato Digestivo, Unidad de Enfermedad Inflamatoria Intestinal, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Begoña Cantabrana
- Farmacología, Departamento de Medicina, Universidad de Oviedo, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
| |
Collapse
|
11
|
Seifert R. Naunyn-Schmiedeberg's Archives of Pharmacology under new editorship: change and continuity. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:667-70. [PMID: 27222234 DOI: 10.1007/s00210-016-1261-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| |
Collapse
|
12
|
Procino G, Carmosino M, Milano S, Dal Monte M, Schena G, Mastrodonato M, Gerbino A, Bagnoli P, Svelto M. β3 adrenergic receptor in the kidney may be a new player in sympathetic regulation of renal function. Kidney Int 2016; 90:555-67. [PMID: 27206969 PMCID: PMC4996630 DOI: 10.1016/j.kint.2016.03.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/04/2016] [Accepted: 03/10/2016] [Indexed: 12/28/2022]
Abstract
To date, the study of the sympathetic regulation of renal function has been restricted to the important contribution of β1- and β2-adrenergic receptors (ARs). Here we investigate the expression and the possible physiologic role of β3-adrenergic receptor (β3-AR) in mouse kidney. The β3-AR is expressed in most of the nephron segments that also express the type 2 vasopressin receptor (AVPR2), including the thick ascending limb and the cortical and outer medullary collecting duct. Ex vivo experiments in mouse kidney tubules showed that β3-AR stimulation with the selective agonist BRL37344 increased intracellular cAMP levels and promoted 2 key processes in the urine concentrating mechanism. These are accumulation of the water channel aquaporin 2 at the apical plasma membrane in the collecting duct and activation of the Na-K-2Cl symporter in the thick ascending limb. Both effects were prevented by the β3-AR antagonist L748,337 or by the protein kinase A inhibitor H89. Interestingly, genetic inactivation of β3-AR in mice was associated with significantly increased urine excretion of water, sodium, potassium, and chloride. Stimulation of β3-AR significantly reduced urine excretion of water and the same electrolytes. Moreover, BRL37344 promoted a potent antidiuretic effect in AVPR2-null mice. Thus, our findings are of potential physiologic importance as they uncover the antidiuretic effect of β3-AR stimulation in the kidney. Hence, β3-AR agonism might be useful to bypass AVPR2-inactivating mutations.
Collapse
Affiliation(s)
- Giuseppe Procino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.
| | - Monica Carmosino
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Serena Milano
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | | | - Giorgia Schena
- Department of Sciences, University of Basilicata, Potenza, Italy
| | | | - Andrea Gerbino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Paola Bagnoli
- Department of Biology, University of Pisa, Pisa, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy; Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy; National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| |
Collapse
|
13
|
Michel MC, Korstanje C. β3-Adrenoceptor agonists for overactive bladder syndrome: Role of translational pharmacology in a repositioning clinical drug development project. Pharmacol Ther 2016; 159:66-82. [PMID: 26808167 DOI: 10.1016/j.pharmthera.2016.01.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
β3-Adrenoceptor agonists were originally considered as a promising drug class for the treatment of obesity and/or type 2 diabetes. When these development efforts failed, they were repositioned for the treatment of the overactive bladder syndrome. Based on the example of the β3-adrenoceptor agonist mirabegron, but also taking into consideration evidence obtained with ritobegron and solabegron, we discuss challenges facing a translational pharmacology program accompanying clinical drug development for a first-in-class molecule. Challenges included generic ones such as ligand selectivity, species differences and drug target gene polymorphisms. Challenges that are more specific included changing concepts of the underlying pathophysiology of the target condition while clinical development was under way; moreover, a paucity of public domain tools for the study of the drug target and aspects of receptor agonists as drugs had to be addressed. Nonetheless, a successful first-in-class launch was accomplished. Looking back at this translational pharmacology program, we conclude that a specifically tailored and highly flexible approach is required. However, several of the lessons learned may also be applicable to translational pharmacology programs in other indications.
Collapse
Affiliation(s)
- Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany.
| | - Cees Korstanje
- Department of Drug Discovery Science & Management-Europe, Astellas Pharma Europe R&D, Leiden, The Netherlands
| |
Collapse
|
14
|
Tripathi A, Gaponenko V, Majetschak M. Commercially available antibodies directed against α-adrenergic receptor subtypes and other G protein-coupled receptors with acceptable selectivity in flow cytometry experiments. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2015; 389:243-8. [PMID: 26660071 DOI: 10.1007/s00210-015-1196-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/02/2015] [Indexed: 11/26/2022]
Abstract
Several previous reports suggested that many commercially available antibodies directed against G protein-coupled receptors (GPCR) lack sufficient selectivity. Accordingly, it has been proposed that receptor antibodies should be validated by at least one of several criteria, such as testing tissues or cells after knockout or silencing of the corresponding gene. Here, we tested whether 12 commercially available antibodies directed against α-adrenergic receptor (AR) subtypes (α1A/B/D, α2A/B/C), atypical chemokine receptor 3 (ACKR3), and vasopressin receptor 1A (AVPR1A) suffice these criteria. We detected in flow cytometry experiments with human vascular smooth muscle cells that the fluorescence signals from each of these antibodies were reduced by 46 ± 10 %-91 ± 2 % in cells treated with commercially available small interfering RNA (siRNA) specific for each receptor, as compared with cells that were incubated with non-targeting siRNA. The tested antibodies included anti-ACKR3 (R&D Systems, mab42273), for which specificity has previously been demonstrated. Staining with this antibody resulted in 72 ± 5 % reduction of the fluorescence signal after ACKR3 siRNA treatment. Furthermore, staining with anti-α1A-AR (Santa Cruz, sc1477) and anti-ACKR3 (Abcam, ab38089), which have previously been reported to be non-specific, resulted in 70 ± 19 % and 80 ± 4 % loss of the fluorescence signal after α1A-AR and ACKR3 siRNA treatment, respectively. Our findings demonstrate that the tested antibodies show reasonable selectivity for their receptor target under our experimental conditions. Furthermore, our observations suggest that the selectivity of GPCR antibodies depends on the method for which the antibody is employed, the species from which cells/tissues are obtained, and on the type of specimens (cell, tissue/cell homogenate, or section) tested.
Collapse
MESH Headings
- Antibodies/immunology
- Antibodies/metabolism
- Antibody Specificity
- Antigen-Antibody Complex/immunology
- Antigen-Antibody Complex/metabolism
- Binding Sites, Antibody
- Cells, Cultured
- Flow Cytometry/methods
- Humans
- Muscle, Smooth, Vascular/immunology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/immunology
- Myocytes, Smooth Muscle/metabolism
- Protein Binding
- RNA Interference
- Receptors, Adrenergic, alpha/genetics
- Receptors, Adrenergic, alpha/immunology
- Receptors, Adrenergic, alpha/metabolism
- Receptors, CXCR/genetics
- Receptors, CXCR/immunology
- Receptors, CXCR/metabolism
- Receptors, Vasopressin/genetics
- Receptors, Vasopressin/immunology
- Receptors, Vasopressin/metabolism
- Transfection
Collapse
Affiliation(s)
- Abhishek Tripathi
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL, 60153, USA
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland, Chicago, IL, 60607, USA
| | - Matthias Majetschak
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL, 60153, USA.
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL, 60153, USA.
| |
Collapse
|
15
|
Role of host β1- and β2-adrenergic receptors in a murine model of B16 melanoma: functional involvement of β3-adrenergic receptors. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:1317-31. [PMID: 26285646 DOI: 10.1007/s00210-015-1165-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/03/2015] [Indexed: 01/03/2023]
Abstract
Complex interactions between tumor cells and their surrounding compartment are strongly influenced by the host in which the tumor grows. In melanoma, for instance, stress-associated norephinephrine (NE), acting at β-adrenergic receptors (β-ARs), stimulates melanoma cell proliferation and tumor angiogenesis. Among β-ARs, β3-ARs play a role acting not only at tumor cells but also at non-neoplastic stromal cells within the melanoma. In the present study, we used a murine model of B16 melanoma to evaluate the role of the host β1- and β2-ARs in melanoma growth and we determined whether the role of β3-ARs can be influenced by the absence of stromal β1- and β2-ARs. As compared to wild-type mice, β1/2-AR knockout mice displayed (i) increased intratumoral levels of both NE and β3-ARs, as evidentiated at both messenger and protein levels; (ii) increased tumor vascularization; (iii) decreased tumor cell proliferation but increased tumor cell apoptosis; and (iv) increased responsiveness to intratumoral injection of the β3-AR blocker L-748,337 in terms of decrease in tumor growth, tumor vascular response, tumor cell proliferation, and increase in tumor cell death. These findings together validate the role of β-AR signaling in melanoma microenvironment suggesting that non-neoplastic stromal cells may be targeted by β-AR-related drugs. The additional fact that β3-ARs play an important role in melanoma growth suggests selective β3-AR antagonists as important proapoptotic agents.
Collapse
|
16
|
The expression of β3-adrenoceptor and muscarinic type 3 receptor immuno-reactivity in the major pelvic ganglion of the rat. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:695-708. [DOI: 10.1007/s00210-015-1122-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 03/31/2015] [Indexed: 10/23/2022]
|
17
|
Michel MC, Igawa Y. Therapeutic targets for overactive bladder other than smooth muscle. Expert Opin Ther Targets 2015; 19:687-705. [DOI: 10.1517/14728222.2015.1009447] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Michel MC, Seifert R. Selectivity of pharmacological tools: implications for use in cell physiology. A review in the theme: Cell signaling: proteins, pathways and mechanisms. Am J Physiol Cell Physiol 2015; 308:C505-20. [PMID: 25631871 DOI: 10.1152/ajpcell.00389.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/24/2015] [Indexed: 01/08/2023]
Abstract
Pharmacological inhibitors are frequently used to identify the receptors, receptor subtypes, and associated signaling pathways involved in physiological cell responses. Based on the effects of such inhibitors conclusions are drawn about the involvement of their assumed target or lack thereof. While such inhibitors can be useful tools for a better physiological understanding, their uncritical use can lead to incorrect conclusions. This article reviews the concept of inhibitor selectivity and its implication for cell physiology. Specifically, we discuss the implications of using inhibitor vs. activator approaches, issues of direct vs. indirect pathway modulation, implications of inverse agonism and biased signaling, and those of orthosteric vs. allosteric, competitive vs. noncompetitive, and reversible vs. irreversible inhibition. Additional problems can result from inconsistent estimates of inhibitor potency and differences in potency between cell-free systems and intact cells. These concepts are illustrated by several examples of inhibitors displaying affinity for related but distinct targets or even unrelated targets. Of note, many of the issues being addressed are also applicable to genetic inhibition strategies. The main practical conclusion following from these concepts is that investigators should be critical in the choice of inhibitor, its concentrations, and its mode of application. When this advice is adhered to, small-molecule pharmacological inhibitors can be important experimental tools in the hand of physiologists.
Collapse
Affiliation(s)
- Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany; and
| | - Roland Seifert
- Department of Pharmacology, Hannover Medical School, Hannover, Germany
| |
Collapse
|