1
|
Tan H, Fu X, Chen Y, Wang Y, Chen D. Hyperlipidemia and lipid-lowering therapy in diabetic retinopathy (DR): A bibliometric study and visualization analysis in 1993-2023. Heliyon 2023; 9:e21109. [PMID: 37916126 PMCID: PMC10616351 DOI: 10.1016/j.heliyon.2023.e21109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
Background Diabetic retinopathy (DR) is a common complication in diabetic patients. DR is also a neurodegenerative disease. Patients with hyperglycemia, hyperlipidemia, and hypertension are vulnerable to retinopathy development. While the roles of blood glucose and blood pressure in the development of retinopathy have been extensively studied, the relationship between body fat and DR pathogenesis and the impact of lipid-reducing drugs on DR has just emerged as a research hotspot in DR study. We aim to visualize the contributions and cooperation of reporters, organizations, and nations, in addition to the research hotspots and trends in DR-related lipid research from 1993 to 2023, by bibliometric analysis. Methods We extracted all publications about DR-related lipid research from 1993 to 2023 from the Web of Science Core Collection, and bibliometric features were studied using VOSviewer and the CiteSpace program. Results 1402 documents were retrieved. The number of studies has risen consistently for three decades, from an average of 16.8/year in the 1990s to 28.8/year in the 2000s, 64.5/year in 2010s, and reached 112/year in 2020-2022, confirming they are hot research topic in the field. These reports were from 93 nations/regions, with the USA, China, Japan, Australia, and England taking the leading positions. Diabetes Research and Clinical Practice was the journal that published the most studies, and Diabetes Care was the most quoted. We identified 6979 authors, with Wong TY having the most papers and being the most commonly co-cited. The most popular keyword, according to our research, is diabetic retinopathy. Oxidative stress, diabetic macular edema (DME), lipid peroxidation, and other topics have often been investigated. Conclusion DR-related lipid research is conducted mainly in North America, Asia, Oceania, and Europe. Much study has centered on the relationship between lipid-lowering therapy and DR pathogenesis. These studies strongly support using lipid-reducing medications (fenofibrate, statins, and omega-3 PUFAs), combined with hyperglycemia and hypertension therapy, to prevent and treat DR. However, the impact of fenofibrate or statin on retinopathy is not correlated with their action on blood lipid profiles. Thus, more randomized clinical trials with primary endpoints related to DR in T1D or T2D are merited. In addition, the lipid biomarker for DR (lipid aldehydes, ALEs, and cholesterol crystals), the action of lipid-reducing medicines on retinopathy, the mechanism of lipid-lowering medications preventing or curing DR, and ocular delivery of lipid-lowering drugs to diabetic patients are predicted as the research focus in the future in the DR-related lipid research field.
Collapse
Affiliation(s)
- Haishan Tan
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangyu Fu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yongjiang Chen
- The School of Optometry and Vision Science, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada
| | - Yujiao Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Danian Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Karan BM, Little K, Augustine J, Stitt AW, Curtis TM. Aldehyde Dehydrogenase and Aldo-Keto Reductase Enzymes: Basic Concepts and Emerging Roles in Diabetic Retinopathy. Antioxidants (Basel) 2023; 12:1466. [PMID: 37508004 PMCID: PMC10376360 DOI: 10.3390/antiox12071466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetic retinopathy (DR) is a complication of diabetes mellitus that can lead to vision loss and blindness. It is driven by various biochemical processes and molecular mechanisms, including lipid peroxidation and disrupted aldehyde metabolism, which contributes to retinal tissue damage and the progression of the disease. The elimination and processing of aldehydes in the retina rely on the crucial role played by aldehyde dehydrogenase (ALDH) and aldo-keto reductase (AKR) enzymes. This review article investigates the impact of oxidative stress, lipid-derived aldehydes, and advanced lipoxidation end products (ALEs) on the advancement of DR. It also provides an overview of the ALDH and AKR enzymes expressed in the retina, emphasizing their growing importance in DR. Understanding the relationship between aldehyde metabolism and DR could guide innovative therapeutic strategies to protect the retina and preserve vision in diabetic patients. This review, therefore, also explores various approaches, such as gene therapy and pharmacological compounds that have the potential to augment the expression and activity of ALDH and AKR enzymes, underscoring their potential as effective treatment options for DR.
Collapse
Affiliation(s)
- Burak Mugdat Karan
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Karis Little
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Josy Augustine
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Tim M Curtis
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK
| |
Collapse
|
3
|
Rodríguez ML, Millán I, Ortega ÁL. Cellular targets in diabetic retinopathy therapy. World J Diabetes 2021; 12:1442-1462. [PMID: 34630899 PMCID: PMC8472497 DOI: 10.4239/wjd.v12.i9.1442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/08/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Despite the existence of treatment for diabetes, inadequate metabolic control triggers the appearance of chronic complications such as diabetic retinopathy. Diabetic retinopathy is considered a multifactorial disease of complex etiology in which oxidative stress and low chronic inflammation play essential roles. Chronic exposure to hyperglycemia triggers a loss of redox balance that is critical for the appearance of neuronal and vascular damage during the development and progression of the disease. Current therapies for the treatment of diabetic retinopathy are used in advanced stages of the disease and are unable to reverse the retinal damage induced by hyperglycemia. The lack of effective therapies without side effects means there is an urgent need to identify an early action capable of preventing the development of the disease and its pathophysiological consequences in order to avoid loss of vision associated with diabetic retinopathy. Therefore, in this review we propose different therapeutic targets related to the modulation of the redox and inflammatory status that, potentially, can prevent the development and progression of the disease.
Collapse
Affiliation(s)
- María Lucía Rodríguez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjassot 46100, Valencia, Spain
| | - Iván Millán
- Neonatal Research Group, Health Research Institute La Fe, Valencia 46026, Valencia, Spain
| | - Ángel Luis Ortega
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjassot 46100, Valencia, Spain
| |
Collapse
|
4
|
Mori A, Sumida D, Kondo R, Nakano A, Arima S, Asano D, Morita A, Sakamoto K, Nagamitsu T, Nakahara T. Impairment of endothelium-dependent vasodilator function of retinal blood vessels in adult rats with a history of retinopathy of prematurity. J Pharmacol Sci 2021; 146:233-243. [PMID: 34116737 DOI: 10.1016/j.jphs.2021.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/03/2021] [Accepted: 04/27/2021] [Indexed: 01/04/2023] Open
Abstract
Retinopathy of prematurity (ROP) is a proliferative retinal vascular disease, initiated by delayed retinal vascular growth after premature birth. In the majority of cases, ROP resolves spontaneously; however, a history of ROP may increase the risk of long-term visual problems. In this study, we evaluated the endothelial function of retinal blood vessels in adult rats with a history of ROP. ROP was induced in rats by subcutaneous injection of a vascular endothelial growth factor receptor tyrosine kinase inhibitor (KRN633) on postnatal day (P) 7 and P8. On P56, vasodilator responses to acetylcholine, GSK1016790A (an activator of transient receptor potential vanilloid 4 channels), NOR3 (a nitric oxide [NO] donor), and salbutamol (a β2-adrenoceptor agonist) were assessed. Compared to age-matched controls, retinal vasodilator responses to acetylcholine and GSK1016790A were attenuated in P56 rats with a history of ROP. No attenuation of acetylcholine-induced retinal vasodilator response was observed under inhibition of NO synthase. Retinal vasodilator responses to NOR3 and salbutamol were unaffected. These results suggest that the production of and/or release of NO is impaired in retinal blood vessels in adult rats with a history of ROP. A history of ROP might increase the risk of impaired retinal circulation in adulthood.
Collapse
Affiliation(s)
- Asami Mori
- Department of Molecular Pharmacology, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Daiki Sumida
- Department of Molecular Pharmacology, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Ryo Kondo
- Department of Molecular Pharmacology, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Ayuki Nakano
- Department of Molecular Pharmacology, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Shiho Arima
- Department of Organic Synthesis, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Daiki Asano
- Department of Molecular Pharmacology, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Akane Morita
- Department of Molecular Pharmacology, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kenji Sakamoto
- Department of Molecular Pharmacology, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tohru Nagamitsu
- Department of Organic Synthesis, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
5
|
Lou B, Boger M, Bennewitz K, Sticht C, Kopf S, Morgenstern J, Fleming T, Hell R, Yuan Z, Nawroth PP, Kroll J. Elevated 4-hydroxynonenal induces hyperglycaemia via Aldh3a1 loss in zebrafish and associates with diabetes progression in humans. Redox Biol 2020; 37:101723. [PMID: 32980661 PMCID: PMC7519378 DOI: 10.1016/j.redox.2020.101723] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/31/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Increased methylglyoxal (MG) formation is associated with diabetes and its complications. In zebrafish, knockout of the main MG detoxifying system Glyoxalase 1, led to limited MG elevation but significantly elevated aldehyde dehydrogenases (ALDH) activity and aldh3a1 expression, suggesting the compensatory role of Aldh3a1 in diabetes. To evaluate the function of Aldh3a1 in glucose homeostasis and diabetes, aldh3a1−/− zebrafish mutants were generated using CRISPR-Cas9. Vasculature and pancreas morphology were analysed by zebrafish transgenic reporter lines. Corresponding reactive carbonyl species (RCS), glucose, transcriptome and metabolomics screenings were performed and ALDH activity was measured for further verification. Aldh3a1−/− zebrafish larvae displayed retinal vasodilatory alterations, impaired glucose homeostasis, which can be aggravated via pdx1 silencing induced hyperglycaemia. Unexpectedly, MG was not altered, but 4-hydroxynonenal (4-HNE), another prominent lipid peroxidation RCS exhibited high affinity with Aldh3a1, was increased in aldh3a1 mutants. 4-HNE was responsible for the retinal phenotype via pancreas disruption induced hyperglycaemia and can be rescued via l-Carnosine treatment. Furthermore, in type 2 diabetic patients, serum 4-HNE was increased and correlated with disease progression. Thus, our data suggest impaired 4-HNE detoxification and elevated 4-HNE concentration as biomarkers but also the possible inducers for diabetes, from genetic susceptibility to the pathological progression. Aldh3a1 mutant was generated using CRISPR/Cas9 and displayed impaired glucose homeostasis. Elevated 4-Hydroxynonenal (4-HNE) was responsible for hyperglycaemia in aldh3a1 mutants and was rescued by Carnosine. Patient serum 4-HNE level was correlated with HbA1c and fasting glucose. Impaired 4-HNE detoxification acts as possible inducers for diabetes, from genetic susceptibility to pathological progress.
Collapse
Affiliation(s)
- Bowen Lou
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Cardiovascular Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710048, China
| | - Mike Boger
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katrin Bennewitz
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carsten Sticht
- Center for Medical Research (ZMF), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan Kopf
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jakob Morgenstern
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Rüdiger Hell
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Zuyi Yuan
- Cardiovascular Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710048, China
| | - Peter Paul Nawroth
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz-Zentrum, München, Heidelberg, Germany
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
6
|
Involvement of Gi protein–dependent BKCa channel activation in β2-adrenoceptor-mediated dilation of retinal arterioles in rats. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:2043-2052. [DOI: 10.1007/s00210-020-01895-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/01/2020] [Indexed: 11/27/2022]
|
7
|
Akagawa M, Mori A, Sakamoto K, Nakahara T. Methylglyoxal Impairs β 2-Adrenoceptor-Mediated Vasodilatory Mechanisms in Rat Retinal Arterioles. Biol Pharm Bull 2018; 41:272-276. [DOI: 10.1248/bpb.b17-00861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Mari Akagawa
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences
| | - Asami Mori
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences
| | - Kenji Sakamoto
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences
| |
Collapse
|
8
|
Probucol prevents the attenuation of β 2-adrenoceptor-mediated vasodilation of retinal arterioles in diabetic rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2017; 390:1247-1253. [PMID: 28913547 DOI: 10.1007/s00210-017-1423-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 09/04/2017] [Indexed: 10/18/2022]
Abstract
Probucol is an antihyperlipidemic drug with potent antioxidant properties. Oxidative stress plays an important role in the pathogenesis of diabetic retinopathy. In this study, we aimed to investigate the protective effects of probucol against diabetes-induced retinal vascular dysfunction in a rat model of diabetes. Diabetes was induced by a combination of streptozotocin treatment and D-glucose feeding, and retinal vasodilator responses were assessed by measuring the diameter of retinal arterioles. The vasodilator effect of salbutamol, a β2-adrenoceptor agonist, on retinal arterioles was significantly diminished 2 weeks after the induction of diabetes. In non-diabetic rats, vasodilator responses to salbutamol were significantly reduced after an intravitreal injection of iberiotoxin, a blocker of large-conductance KCa (BKCa) channels. However, this effect was not observed in diabetic rats. Probucol had no significant effect on salbutamol-induced changes in diameter of retinal arterioles in non-diabetic rats, whereas it could prevent the attenuation of retinal vasodilator response to salbutamol in diabetic rats. These results suggest that the reduced function of BKCa channels is involved in the attenuation of β2-adrenoceptor-mediated retinal vasodilation in diabetic rats. Probucol preserves the BKCa channel function in retinal arterioles under diabetic conditions; therefore, it may show beneficial effects on diabetic retinopathy by preventing or slowing the impairment of the retinal circulation in patients with diabetes mellitus.
Collapse
|
9
|
Li GY, Li ZB, Li F, Dong LP, Tang L, Xiang J, Li JM, Bao MH. Meta-Analysis on the Association of ALDH2 Polymorphisms and Type 2 Diabetic Mellitus, Diabetic Retinopathy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14020165. [PMID: 28208752 PMCID: PMC5334719 DOI: 10.3390/ijerph14020165] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 01/08/2017] [Accepted: 01/31/2017] [Indexed: 11/16/2022]
Abstract
Type 2 diabetic mellitus (T2DM) is a disease with high prevalence and a major cause for death worldwide. Diabetic retinopathy (DR) is one of the major manifestation of diabetes. Aldehyde dehydrogenease 2 (ALDH2) detoxifies aldehyde produced during ethanol metabolism and oxidative stress. It has been found that the polymorphism in ALDH2 rs671 is probably associated with the risk of T2DM and DR. However, a lot of inconsistency and controversy still exists. In order to get a more precise and comprehensive estimation for the association between ALDH2 polymorphism with the risk of T2DM and DR, we conducted the present meta-analysis. A comprehensive literature search was conducted using databases, such as Pubmed, Embase, Cochrane Central Register of Controlled Trials, Chinese National Knowledge Infrastructure, and Chinese Biomedical Literature Database, for all related studies. The included studies met the inclusion criteria, such as being case-control studies about the association of ALDH2 polymorphism and T2DM or DR susceptibility, with sufficient data for the present analysis. Eight studies with 2374 cases and 6694 controls were involved in the present meta-analysis. The results indicated a significant lower risk of T2DM for *1/*1 genotype in homozygous models (*1/*1 vs. *2/*2, OR = 0.31, 95% CI = 0.11–0.89, p = 0.03) and in the dominant model (*1/*1 vs. *2/*2 + *1/*2, OR = 0.61, 95% CI = 0.37–1.00, p = 0.05). Subgroup analysis by ethnicity found a significant lower risk of T2DM in Chinese in all genotype models. No significant relation was found between ALDH2 rs671 and DR. In conclusion, the current meta-analysis indicated that ALDH2 rs671 was significantly related with T2DM. The ALDH2 rs671 might be able to be used as a predictor for the risk of T2DM. However, due to the existence of heterogeneity and publication bias in the involved studies, our results should be interpreted with caution.
Collapse
Affiliation(s)
- Guang-Yi Li
- Department of Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha 410219, China.
| | - Zi-Bo Li
- Department of Medical Laboratory, Changsha Medical University, Changsha 410219, China.
| | - Fang Li
- Department of Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha 410219, China.
| | - Li-Ping Dong
- Department of Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha 410219, China.
| | - Liang Tang
- Department of Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha 410219, China.
| | - Ju Xiang
- Department of Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha 410219, China.
| | - Jian-Ming Li
- Department of Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha 410219, China.
| | - Mei-Hua Bao
- Department of Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha 410219, China.
| |
Collapse
|