1
|
Riha I, Salameh A, Hoschke A, Raffort C, Koedel J, Rassler B. Hypoxia-Induced Pulmonary Injury-Adrenergic Blockade Attenuates Nitrosative Stress, and Proinflammatory Cytokines but Not Pulmonary Edema. J Cardiovasc Dev Dis 2024; 11:195. [PMID: 39057617 PMCID: PMC11277000 DOI: 10.3390/jcdd11070195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Hypoxia can induce pulmonary edema (PE) and inflammation. Furthermore, hypoxia depresses left ventricular (LV) inotropy despite sympathetic activation. To study the role of hypoxic sympathetic activation, we investigated the effects of hypoxia with and without adrenergic blockade (AB) on cardiovascular dysfunction and lung injury, i.e., pulmonary edema, congestion, inflammation, and nitrosative stress. Eighty-six female rats were exposed for 72 h to normoxia or normobaric hypoxia and received infusions with NaCl, prazosin, propranolol, or prazosin-propranolol combination. We evaluated hemodynamic function and performed histological and immunohistochemical analyses of the lung. Hypoxia significantly depressed LV but not right ventricular (RV) inotropic and lusitropic functions. AB significantly decreased LV function in both normoxia and hypoxia. AB effects on RV were weaker. Hypoxic rats showed signs of moderate PE and inflammation. This was accompanied by elevated levels of tumor necrosis factor α (TNFα) and nitrotyrosine, a marker of nitrosative stress in the lungs. In hypoxia, all types of AB markedly reduced both TNFα and nitrotyrosine. However, AB did not attenuate PE. The results suggest that hypoxia-induced sympathetic activation contributes to inflammation and nitrosative stress in the lungs but not to PE. We suggest that AB in hypoxia aggravates hypoxia-induced inotropic LV dysfunction and backlog into the pulmonary circulation, thus promoting PE.
Collapse
Affiliation(s)
- Isabel Riha
- Carl-Ludwig-Institute of Physiology, University of Leipzig, 04103 Leipzig, Germany; (I.R.); (A.H.)
| | - Aida Salameh
- Department of Pediatric Cardiology, Heart Centre, University of Leipzig, 04289 Leipzig, Germany; (A.S.); (C.R.)
| | - Annekathrin Hoschke
- Carl-Ludwig-Institute of Physiology, University of Leipzig, 04103 Leipzig, Germany; (I.R.); (A.H.)
| | - Coralie Raffort
- Department of Pediatric Cardiology, Heart Centre, University of Leipzig, 04289 Leipzig, Germany; (A.S.); (C.R.)
| | - Julia Koedel
- Institute of Pathology, University of Leipzig, 04103 Leipzig, Germany;
| | - Beate Rassler
- Carl-Ludwig-Institute of Physiology, University of Leipzig, 04103 Leipzig, Germany; (I.R.); (A.H.)
| |
Collapse
|
2
|
Relaxin does not prevent development of hypoxia-induced pulmonary edema in rats. Pflugers Arch 2022; 474:1053-1067. [PMID: 35778581 PMCID: PMC9492557 DOI: 10.1007/s00424-022-02720-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/06/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
Abstract
Acute hypoxia impairs left ventricular (LV) inotropic function and induces development of pulmonary edema (PE). Enhanced and uneven hypoxic pulmonary vasoconstriction is an important pathogenic factor of hypoxic PE. We hypothesized that the potent vasodilator relaxin might reduce hypoxic pulmonary vasoconstriction and prevent PE formation. Furthermore, as relaxin has shown beneficial effects in acute heart failure, we expected that relaxin might also improve LV inotropic function in hypoxia. Forty-two rats were exposed over 24 h to normoxia or hypoxia (10% N2 in O2). They were infused with either 0.9% NaCl solution (normoxic/hypoxic controls) or relaxin at two doses (15 and 75 μg kg−1 day−1). After 24 h, hemodynamic measurements and bronchoalveolar lavage were performed. Lung tissue was obtained for histological and immunohistochemical analyses. Hypoxic control rats presented significant depression of LV systolic pressure by 19% and of left and right ventricular contractility by about 40%. Relaxin did not prevent the hypoxic decrease in LV inotropic function, but re-increased right ventricular contractility. Moreover, hypoxia induced moderate interstitial PE and inflammation in the lung. Contrasting to our hypothesis, relaxin did not prevent hypoxia-induced pulmonary edema and inflammation. In hypoxic control rats, PE was similarly distributed in the apical and basal lung lobes. In relaxin-treated rats, PE index was 35–40% higher in the apical than in the basal lobe, which is probably due to gravity effects. We suggest that relaxin induced exaggerated vasodilation, and hence pulmonary overperfusion. In conclusion, the results show that relaxin does not prevent but rather may aggravate PE formation.
Collapse
|
3
|
Yang L, Li J, Wang G, Zhou H, Fang Z, Shi S, Lei G, Zhang C, Chen Y, Yang X. Postoperative liver dysfunction after total arch replacement combined with frozen elephant trunk implantation: incidence, risk factors and outcomes. Interact Cardiovasc Thorac Surg 2019; 29:930-936. [PMID: 31504538 DOI: 10.1093/icvts/ivz209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/25/2019] [Accepted: 08/01/2019] [Indexed: 01/20/2023] Open
Abstract
Abstract
OBJECTIVES
The authors aimed to clarify the incidence and risk factors of postoperative liver dysfunction (PLD) in patients undergoing total arch replacement combined with frozen elephant trunk implantation and to determine the association of PLD with short-term outcomes.
METHODS
Data from 672 adult patients undergoing total arch replacement with frozen elephant trunk from January 2013 until December 2016 at Fuwai Hospital were analysed retrospectively. A multivariable logistic regression model was used to identify the risk factors for PLD.
RESULTS
The overall incidence of PLD was 27.5%, which was associated with higher in-hospital mortality (PLD 4.9% vs No PLD 0.8%, P = 0.002) and 30-day mortality (PLD 9.2% vs No PLD 2.5%, P < 0.001) and a higher incidence of major adverse events (PLD 54.6% vs No PLD 23.4%, P < 0.001). In the multivariable analysis, preoperative hypotension [odds ratio (OR) 1.97, 95% confidence interval (CI) 1.14–3.41; P = 0.02), coronary artery disease (OR 2.64, 95% CI 1.17–5.96; P = 0.02), prolonged cardiopulmonary bypass duration (OR 1.01, 95% CI 1.00–1.01; P < 0.001), increased preoperative alanine transferase (OR 1.01, 95% CI 1.00–1.01; P < 0.001), preoperative platelet count <100 × 109/l (OR 3.99, 95% CI 1.74–9.14; P = 0.001) and increased intraoperative erythrocyte transfusion (OR 1.07, 95% CI 1.01–1.12; P = 0.02) were identified as independent risk factors for PLD.
CONCLUSIONS
PLD was associated with increased mortality and morbidity. Among the independent risk factors for PLD, cardiopulmonary bypass duration and erythrocyte transfusion could be modifiable. A skilled surgical team and an ideal blood protection strategy may be helpful to protect liver function.
Collapse
Affiliation(s)
- Lijing Yang
- Department of Anaesthesiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Li
- Department of Anaesthesiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guyan Wang
- Department of Anaesthesiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Anaesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hui Zhou
- Department of Anaesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhongrong Fang
- Department of Anaesthesiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sheng Shi
- Department of Anaesthesiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guiyu Lei
- Department of Anaesthesiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Congya Zhang
- Department of Anaesthesiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yimeng Chen
- Department of Anaesthesiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiying Yang
- Department of Anaesthesiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Angiotensin II-induced hypertension increases the mutant frequency in rat kidney. Arch Toxicol 2019; 93:2045-2055. [PMID: 31098697 DOI: 10.1007/s00204-019-02477-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/08/2019] [Indexed: 01/05/2023]
Abstract
Epidemiological studies revealed an increased risk for kidney cancer in hypertensive patients. In many of these patients, the blood pressure regulating renin-angiotensin-aldosterone system (RAAS) is activated. A stimulated RAAS leads to oxidative stress and increases markers of DNA damage, both in vitro and in animal models of hypertension. However, the mutagenic potential of RAAS activation has not been investigated yet. To quantify hypertension-induced mutations, BigBlue®+/- rats, which carry a transgenic lacI gene for mutation analysis, were treated for 20 weeks with a mean dose of 400 µg angiotensin II/kg × day. Angiotensin II-treated animals showed significantly increased blood pressure and impaired kidney function. Urinary excretion of oxidized nucleobases was raised. Additionally, in the renal cortex, oxidative stress, oxidatively generated DNA lesions and DNA strandbreaks were significantly increased. Further, a significant elevation of the mutant frequency in kidney DNA was detected. Sequencing revealed the presence of GC → T:A transversions in the mutated lacI genes of the angiotensin II-treated animals as a result of unrepaired oxidatively modified DNA bases, while no such transversions were found in the mutated lacI genes from control animals. The results demonstrate that the oxidative stress and DNA damage previously observed in kidney cells in vitro and in vivo after angiotensin II treatment indeed is associated with the accumulation of mutations in rat kidneys, providing further evidence for a cancer-initiating potential of elevated angiotensin II concentrations.
Collapse
|
5
|
Salameh A, Dhein S, Mewes M, Sigusch S, Kiefer P, Vollroth M, Seeger J, Dähnert I. Anti-oxidative or anti-inflammatory additives reduce ischemia/reperfusions injury in an animal model of cardiopulmonary bypass. Saudi J Biol Sci 2019; 27:18-29. [PMID: 31889812 PMCID: PMC6933174 DOI: 10.1016/j.sjbs.2019.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 01/02/2023] Open
Abstract
Severe inborn cardiac malformations are typically corrected in cardioplegia, with a cardio-pulmonary bypass (CPB) taking over body circulation. During the operation the arrested hearts are subjected to a global ischemia/reperfusion injury. Although the applied cardioplegic solutions have a certain protective effect, application of additional substances to reduce cardiac damage are of interest. 18 domestic piglets (10–15 kg) were subjected to a 90 min CPB and a 120 min reperfusion phase without or with the application of epigallocatechin-3-gallate (10 mg/kg body weight) or minocycline (4 mg/kg body weight), with both drugs given before and after CPB. 18 additional sham-operated piglets without or with epigallocatechin-3-gallate or minocycline served as controls. In total 36 piglets were analyzed (3 CPB-groups and 3 control groups without or with epigallocatechin-3-gallate or minocycline respectively; 6 piglets per group). Hemodynamic and blood parameters and ATP-measurements were assessed. Moreover, a histological evaluation of the heart muscle was performed. Results Piglets of the CPB-group needed more catecholamine support to achieve sufficient blood pressure. Ejection fraction and cardiac output were not different between the 6 groups. However, cardiac ATP-levels and blood lactate were significantly lower and creatine kinase was significantly higher in the three CPB-groups. Markers of apoptosis, hypoxia, nitrosative and oxidative stress were significantly elevated in hearts of the CPB-group. Nevertheless, addition of epigallocatechin-3-gallate or minocycline significantly reduced markers of myocardial damage. Noteworthy, EGCG was more effective in reducing markers of hypoxia, whereas minocycline more efficiently decreased inflammation. Conclusions While epigallocatechin-3-gallate or minocycline did not improve cardiac hemodynamics, markers of myocardial damage were significantly lower in the CPB-groups with epigallocatechin-3-gallate or minocycline supplementation.
Collapse
Key Words
- ACT, activated clotting time
- AEC, 3-amino-9-ethylcarbazole
- AIF, apoptosis-inducing factor
- CO, cardiac output
- CPB, cardio-pulmonary bypass
- Cardio-pulmonary bypass
- DNA, deoxyribonucleic acid
- EF, ejection fraction
- EGCG, epigallo-3-catechin-gallate
- EGCG, ischemia/reperfusion injury
- HIF1α, hypoxia-inducible factor α
- HPLC, high pressure liquid chromatography
- Heart
- MPTP, mitochondrial permeability transition pore
- Minocycline
- NT, nitrotyrosine
- PAR, poly-ADP-ribose
- PARP, poly-ADP-ribose polymerase
- ROS, reactive oxygen species
- TNFα, tumor necrosis factor α
- cC3, cleaved caspase-3
Collapse
Affiliation(s)
- Aida Salameh
- University of Leipzig, Heart Centre Clinic for Paediatric Cardiology, Germany
- Corresponding author at: University of Leipzig, Heart Centre Clinic for Paediatric Cardiology, Struempellstrasse 39, 04289 Leipzig, Germany.
| | - Stefan Dhein
- University of Leipzig, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Germany
| | - Marie Mewes
- University of Leipzig, Heart Centre Clinic for Paediatric Cardiology, Germany
| | - Sophie Sigusch
- University of Leipzig, Heart Centre Clinic for Paediatric Cardiology, Germany
| | - Philipp Kiefer
- University of Leipzig, Heart Center, Department of Cardiac Surgery, Leipzig, Germany
| | - Marcel Vollroth
- University of Leipzig, Heart Center, Department of Cardiac Surgery, Leipzig, Germany
| | - Johannes Seeger
- University of Leipzig, Institute of Vetinary Anatomy, Histology and Embryology, Germany
| | - Ingo Dähnert
- University of Leipzig, Heart Centre Clinic for Paediatric Cardiology, Germany
| |
Collapse
|
6
|
Haghi-Aminjan H, Baeeri M, Rahimifard M, Alizadeh A, Hodjat M, Hassani S, Asghari MH, Abdollahi A, Didari T, Hosseini R, Sharifzadeh M, Abdollahi M. The role of minocycline in alleviating aluminum phosphide-induced cardiac hemodynamic and renal toxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 64:26-40. [PMID: 30290328 DOI: 10.1016/j.etap.2018.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/28/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Poisoning with aluminum phosphide (AlP) has been attributed to the high rate of mortality among many Asian countries. It affects several organs, mainly heart and kidney. Numerous literature demonstrated the valuable effect of minocycline in mitigating pathological symptoms of heart and kidney disease. The aim of the present study was to evaluate the probable protective effect of minocycline on cardiac hemodynamic parameters abnormalities and renal toxicity induced by AlP-poisoning in the rat model. AlP was administered by gavage at 12 mg/kg body weight followed by injection of minocycline for two interval times of 12 and 24 h, at 40, 80, 120 mg/kg body weight. Electrocardiographic (ECG) parameters were monitored, 30 min after AlP gavage for 6 h using an electronic cardiovascular monitoring device. Kidney tissue and serum were collected for the study of histology, mitochondrial complexes I, II, IV, lactate dehydrogenase (LDH) and myeloperoxidase (MPO) activity, ADP/ATP ratio, mitochondrial cytochrome c release, apoptosis, lactate, BUN, and Cr levels. The results demonstrated that AlP induces ECG abnormalities, and failure of heart rate and blood pressure, which improved significantly by minocycline. Minocycline treatment significantly improved complexes I, IV, MPO and LDH activities, and also reduced the ADP/ATP ratio, lactate level, release of cytochrome c, and apoptosis in the kidney following AlP-poisoning. Also, the histological results showed an improvement of kidney injury in minocycline treated groups. In conclusion, the findings of this study showed that minocycline could improve cardiac hemodynamic abnormalities and kidney injury following AlP-poisoning, suggesting minocycline might be a possible candidate for the treatment of AlP-poisoning.
Collapse
Affiliation(s)
- Hamed Haghi-Aminjan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Ahad Alizadeh
- Department of Epidemiology and Reproductive Health, Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mahshid Hodjat
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Asghari
- Department of Pharmacology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Alireza Abdollahi
- Department of Pathology, Imam Khomeini Complex Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Tina Didari
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Rohollah Hosseini
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Natanov R, Gueler F, Falk CS, Kühn C, Maus U, Boyle EC, Siemeni T, Knoefel AK, Cebotari S, Haverich A, Madrahimov N. Blood cytokine expression correlates with early multi-organ damage in a mouse model of moderate hypothermia with circulatory arrest using cardiopulmonary bypass. PLoS One 2018; 13:e0205437. [PMID: 30308065 PMCID: PMC6181365 DOI: 10.1371/journal.pone.0205437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/25/2018] [Indexed: 12/12/2022] Open
Abstract
Cardiopulmonary bypass (CPB) with moderate hypothermic cardiac arrest (MHCA) is essential for prolonged complex procedures in cardiac surgery and is associated with postoperative complications. Although cytokine release provoked through MHCA under CPB plays a pivotal role in postoperative organ damage, the pathomechanisms are unclear. Here, we investigated the cytokine release pattern and histological organ damage after MHCA using a recently described mouse CPB model. Eight BALB/c mice underwent 60 minutes of circulatory arrest under CPB, were successively rewarmed and reperfused. Blood cytokine concentrations and liver and kidney function parameters were measured and histological changes to these organs were compared to control animals. Our results showed a marked increase in proinflammatory cytokines and histological changes in the kidney, lung, and liver after CPB. Furthermore, clinical chemistry showed signs of hemolysis and acute kidney injury. These results suggest early onset of solid organ injury which correlates with increased leukocyte infiltration. A better understanding of the interplay between pro-inflammatory cytokine activation and solid organ injury in this model of CBP with MHCA will inform strategies to reduce organ damage during cardiac surgeries in the clinic.
Collapse
Affiliation(s)
- Ruslan Natanov
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Faikah Gueler
- Department of Nephrology, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Christine S. Falk
- Institute of Transplant Immunology, Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Christian Kühn
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Ulrich Maus
- Department of Pneumology, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Erin C. Boyle
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Thierry Siemeni
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Ann-Katrin Knoefel
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Serghei Cebotari
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Axel Haverich
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Nodir Madrahimov
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
- * E-mail:
| |
Collapse
|
8
|
Berger NA, Besson VC, Boulares AH, Bürkle A, Chiarugi A, Clark RS, Curtin NJ, Cuzzocrea S, Dawson TM, Dawson VL, Haskó G, Liaudet L, Moroni F, Pacher P, Radermacher P, Salzman AL, Snyder SH, Soriano FG, Strosznajder RP, Sümegi B, Swanson RA, Szabo C. Opportunities for the repurposing of PARP inhibitors for the therapy of non-oncological diseases. Br J Pharmacol 2018; 175:192-222. [PMID: 28213892 PMCID: PMC5758399 DOI: 10.1111/bph.13748] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/06/2017] [Accepted: 02/13/2017] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED The recent clinical availability of the PARP inhibitor olaparib (Lynparza) opens the door for potential therapeutic repurposing for non-oncological indications. Considering (a) the preclinical efficacy data with PARP inhibitors in non-oncological diseases and (b) the risk-benefit ratio of treating patients with a compound that inhibits an enzyme that has physiological roles in the regulation of DNA repair, we have selected indications, where (a) the severity of the disease is high, (b) the available therapeutic options are limited, and (c) the duration of PARP inhibitor administration could be short, to provide first-line options for therapeutic repurposing. These indications are as follows: acute ischaemic stroke; traumatic brain injury; septic shock; acute pancreatitis; and severe asthma and severe acute lung injury. In addition, chronic, devastating diseases, where alternative therapeutic options cannot halt disease development (e.g. Parkinson's disease, progressive multiple sclerosis or severe fibrotic diseases), should also be considered. We present a preclinical and clinical action plan for the repurposing of PARP inhibitors. LINKED ARTICLES This article is part of a themed section on Inventing New Therapies Without Reinventing the Wheel: The Power of Drug Repurposing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.2/issuetoc.
Collapse
Affiliation(s)
- Nathan A Berger
- Center for Science, Health and SocietyCase Western Reserve University School of MedicineClevelandOHUSA
| | - Valerie C Besson
- EA4475 – Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de ParisUniversité Paris Descartes, Sorbonne Paris CitéParisFrance
| | - A Hamid Boulares
- The Stanley Scott Cancer Center, School of MedicineLouisiana State University Health Sciences CenterNew OrleansLAUSA
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of BiologyUniversity of KonstanzConstanceGermany
| | - Alberto Chiarugi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, Headache Center – University HospitalUniversity of FlorenceFlorenceItaly
| | - Robert S Clark
- Department of Critical Care Medicine and Safar Center for Resuscitation ResearchUniversity of PittsburghPittsburghPAUSA
| | - Nicola J Curtin
- Newcastle University, Northern Institute for Cancer Research, Medical SchoolUniversity of Newcastle Upon TyneNewcastle Upon TyneUK
| | | | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering and Department of Neurology and Department of Pharmacology and Molecular Sciences and Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering and Department of Neurology and Department of Physiology and Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - György Haskó
- Department of Surgery and Center for Immunity and InflammationRutgers‐New Jersey Medical SchoolNewarkNJUSA
| | - Lucas Liaudet
- Department of Intensive Care Medicine and Burn CenterUniversity Hospital Medical Center, Faculty of Biology and MedicineLausanneSwitzerland
| | - Flavio Moroni
- Department of NeuroscienceUniversità degli Studi di FirenzeFlorenceItaly
| | - Pál Pacher
- Laboratory of Physiologic Studies, Section on Oxidative Stress Tissue InjuryNIAAA, NIHBethesdaUSA
| | - Peter Radermacher
- Institute of Anesthesiological Pathophysiology and Process EngineeringUniversity HospitalUlmGermany
| | | | - Solomon H Snyder
- Department of Neurology and Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Francisco Garcia Soriano
- Departamento de Clínica MédicaFaculdade de Medicina da Universidade de São PauloSão PauloSPBrazil
| | - Robert P Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Department of Neurosurgery, Mossakowski Medical Research CentrePolish Academy of SciencesWarsawPoland
| | - Balázs Sümegi
- Department of Biochemistry and Medical ChemistryUniversity of PécsPécsHungary
| | - Raymond A Swanson
- Department of NeurologyUniversity of California San Francisco and San Francisco Veterans Affairs Medical CenterSan FranciscoCAUSA
| | - Csaba Szabo
- Department of AnesthesiologyUniversity of Texas Medical BranchGalvestonTXUSA
| |
Collapse
|
9
|
Dai C, Ciccotosto GD, Cappai R, Wang Y, Tang S, Xiao X, Velkov T. Minocycline attenuates colistin-induced neurotoxicity via suppression of apoptosis, mitochondrial dysfunction and oxidative stress. J Antimicrob Chemother 2017; 72:1635-1645. [PMID: 28204513 DOI: 10.1093/jac/dkx037] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/18/2017] [Indexed: 11/13/2022] Open
Abstract
Background Neurotoxicity is an adverse effect patients experience during colistin therapy. The development of effective neuroprotective agents that can be co-administered during polymyxin therapy remains a priority area in antimicrobial chemotherapy. The present study investigates the neuroprotective effect of the synergistic tetracycline antibiotic minocycline against colistin-induced neurotoxicity. Methods The impact of minocycline pretreatment on colistin-induced apoptosis, caspase activation, oxidative stress and mitochondrial dysfunction were investigated using cultured mouse neuroblastoma-2a (N2a) and primary cortical neuronal cells. Results Colistin-induced neurotoxicity in mouse N2a and primary cortical cells gives rise to the generation of reactive oxygen species (ROS) and subsequent cell death via apoptosis. Pretreatment of the neuronal cells with minocycline at 5, 10 and 20 μM for 2 h prior to colistin (200 μM) exposure (24 h), had an neuroprotective effect by significantly decreasing intracellular ROS production and by upregulating the activities of the anti-ROS enzymes superoxide dismutase and catalase. Minocycline pretreatment also protected the cells from colistin-induced mitochondrial dysfunction, caspase activation and subsequent apoptosis. Immunohistochemical imaging studies revealed colistin accumulates within the dendrite projections and cell body of primary cortical neuronal cells. Conclusions To our knowledge, this is first study demonstrating the protective effect of minocycline on colistin-induced neurotoxicity by scavenging of ROS and suppression of apoptosis. Our study highlights that co-administration of minocycline kills two birds with one stone: in addition to its synergistic antimicrobial activity, minocycline could potentially ameliorate unwanted neurotoxicity in patients undergoing polymyxin therapy.
Collapse
Affiliation(s)
- Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Giuseppe D Ciccotosto
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Roberto Cappai
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Yang Wang
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Shusheng Tang
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Xilong Xiao
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Tony Velkov
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
10
|
Haghi-Aminjan H, Asghari MH, Goharbari MH, Abdollahi M. A systematic review on potential mechanisms of minocycline in kidney diseases. Pharmacol Rep 2017; 69:602-609. [DOI: 10.1016/j.pharep.2017.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 01/06/2017] [Accepted: 02/02/2017] [Indexed: 12/16/2022]
|
11
|
Shi H, Lu R, Wang S, Chen H, Wang F, Liu K. Effects of SDF-1/CXCR4 on Acute Lung Injury Induced by Cardiopulmonary Bypass. Inflammation 2017; 40:937-945. [DOI: 10.1007/s10753-017-0538-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Zhao Q, Wu J, Hua Q, Lin Z, Ye L, Zhang W, Wu G, Du J, Xia J, Chu M, Hu X. Resolvin D1 mitigates energy metabolism disorder after ischemia-reperfusion of the rat lung. J Transl Med 2016; 14:81. [PMID: 27009328 PMCID: PMC4806414 DOI: 10.1186/s12967-016-0835-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/16/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Energy metabolism disorder is a critical process in lung ischemia-reperfusion injury (LIRI). This study was aimed to determine the effects of resolvin D1 (RvD1) on the energy metabolism in LIRI. METHODS Forty Sprague-Dawley rats were divided into the following groups: Sham group; untreated ischemia-reperfusion (IR) control; IR treated with normal saline (IR-NS); and IR treated with RvD1 (IR-RV) (100 μg/kg, iv). LIRI and energy metabolism disorder were determined in these rats. RESULTS The results revealed that the levels of interleukin (IL)-1β, tumor necrosis factor-α, IL-10, monocyte chemoattractant protein-1, macrophage inflammatory protein-2, cytokine-induced neutrophil chemoattractant-1, injured alveoli rate, apoptosis index, pulmonary permeability index, malondialdehyde, ADP, and lactic acid were increased, whereas the levels of ATP, ATP/ADP, glycogen, Na(+)-K(+)-ATPase, superoxide dismutase, glutathione peroxidase activity, pulmonary surfactant associated protein-A, and oxygenation index were decreased in rats with LIRI. Except for IL-10, all these biomarkers of LIRI and its related energy metabolism disorder were significantly inhibited by RvD1 treatment. In addition, histological analysis via hematoxylin-eosin staining, and transmission electron microscopy confirmed that IR-induced structure damages of lung tissues were reduced by RvD1. CONCLUSION RvD1 improves the energy metabolism of LIRI disturbance, protects the mitochondrial structure and function, increases the ATP, glycogen content and Na(+)-K(+)-ATPase activity of lung tissue, balances the ratio of ATP/ADP and finally decreases the rate of apoptosis, resulting in the protection of IR-induced lung injury. The improved energy metabolism after LIRI may be related to the reduced inflammatory response, the balance of the oxidative/antioxidant and the pro-inflammatory/anti-inflammatory systems in rats.
Collapse
Affiliation(s)
- Qifeng Zhao
- The Department of Children's Cardiovascular and Thoracic Surgery, Children's Heart Center, the Second Affiliated Hospital, Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Ji Wu
- Wuhan Medical & Healthcare Center for Woman and Children, 430015, Wuhan, People's Republic of China
| | - Qingwang Hua
- The Department of Children's Cardiovascular and Thoracic Surgery, Children's Heart Center, the Second Affiliated Hospital, Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Zhiyong Lin
- The Department of Children's Cardiovascular and Thoracic Surgery, Children's Heart Center, the Second Affiliated Hospital, Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Leping Ye
- The Department of Children's Respiration Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Weixi Zhang
- The Department of Children's Respiration Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Guowei Wu
- The Department of Children's Cardiovascular and Thoracic Surgery, Children's Heart Center, the Second Affiliated Hospital, Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Jie Du
- The Department of Children's Cardiovascular and Thoracic Surgery, Children's Heart Center, the Second Affiliated Hospital, Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Jie Xia
- The Department of Children's Cardiovascular and Thoracic Surgery, Children's Heart Center, the Second Affiliated Hospital, Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Maoping Chu
- The Department of Children's Cardiovascular Medicine, Children's Heart Center, the Second Affiliated Hospital, Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Xingti Hu
- The Department of Children's Cardiovascular and Thoracic Surgery, Children's Heart Center, the Second Affiliated Hospital, Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China.
| |
Collapse
|
13
|
Salameh A, Dhein S. Strategies for Pharmacological Organoprotection during Extracorporeal Circulation Targeting Ischemia-Reperfusion Injury. Front Pharmacol 2015; 6:296. [PMID: 26733868 PMCID: PMC4686733 DOI: 10.3389/fphar.2015.00296] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/02/2015] [Indexed: 01/28/2023] Open
Abstract
Surgical correction of congenital cardiac malformations or aortocoronary bypass surgery in many cases implies the use of cardiopulmonary-bypass (CPB). However, a possible negative impact of CPB on internal organs such as brain, kidney, lung and liver cannot be neglected. In general, CPB initiates a systemic inflammatory response (SIRS) which is presumably caused by contact of blood components with the surface of CPB tubing. Moreover, during CPB the heart typically undergoes a period of cold ischemia, and the other peripheral organs a global low flow hypoperfusion. As a result, a plethora of pro-inflammatory mediators and cytokines is released activating different biochemical pathways, which finally may result in the occurrence of microthrombosis, microemboli, in depletion of coagulation factors and haemorrhagic diathesis besides typical ischemia-reperfusion injuries. In our review we will focus on possible pharmacological interventions in patients to decrease negative effects of CPB and to improve post-operative outcome with regard to heart and other organs like brain, kidney, or lung.
Collapse
Affiliation(s)
- Aida Salameh
- Clinic for Pediatric Cardiology, Heart Centre University of Leipzig Leipzig, Germany
| | - Stefan Dhein
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig Leipzig, Germany
| |
Collapse
|
14
|
Salameh A, Halling M, Seidel T, Dhein S. Effects of minocycline on parameters of cardiovascular recovery after cardioplegic arrest in a rabbit Langendorff heart model. Clin Exp Pharmacol Physiol 2015; 42:1258-65. [DOI: 10.1111/1440-1681.12485] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 08/26/2015] [Accepted: 08/27/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Aida Salameh
- Clinic for Pediatric Cardiology; Heart Centre; University of Leipzig; Leipzig Germany
| | - Michelle Halling
- Clinic for Cardiac Surgery; Heart Centre; University of Leipzig; Leipzig Germany
| | - Thomas Seidel
- Nora Eccles Harrison Cardiovascular Research and Training Institute; University of Utah; Salt Lake City Utah USA
| | - Stefan Dhein
- Clinic for Cardiac Surgery; Heart Centre; University of Leipzig; Leipzig Germany
| |
Collapse
|